Back to Search Start Over

Polymorphism of Two-Dimensional Cyanine Dye J-Aggregates and Its Genesis: Fluorescence Microscopy and Atomic Force Microscopy Study

Authors :
Anatoly V. Vannikov
S. I. Pozin
O. M. Perelygina
V. V. Prokhorov
Eugene I. Mal’tsev
Source :
The Journal of Physical Chemistry B. 119:15046-15053
Publication Year :
2015
Publisher :
American Chemical Society (ACS), 2015.

Abstract

Polymorphic J-aggregates of monomethine cyanine dye 3,3'-di(γ-sulfopropyl)-5,5'-dichlorotiamonomethinecyanine (TC) have been studied by fluorescence optical microscopy (FOM) and by atomic force microscopy (AFM). The in situ FOM observations in a solution drop distinguish two J-aggregate morphology classes: flexible strips and rigid rods. The AFM imaging of dried samples reveals a strong J-aggregate structural rearrangement under adsorption on a mica surface with the strips self-folding and the rods squashing into rectangular bilayers and much deeper destruction. In the present work, the following structural conclusions have been drawn on the basis of careful consideration of strip crystal habits and various structural features of squashed/destructed rods: (1) the tubular morphology of TC rods is directly proved by FOM measurements in the solution bulk; (2) the staircase model of molecular arrangement in strips is proposed explaining the characteristic ∼44° skew angle in strip vertices; (3) a model of tube formation by a close-packed helical winding of flexible monolayer strips is proposed and justified which explains the observed J-aggregate polymorphism and strip-to-rod polymorphic transformations in a wide spatiotemporal scale; (4) at a nanoscale, an unexpectedly complex quasi-one-dimensional organization in J-aggregate two-dimensional monolayers is observed by high-resolution AFM imaging of constituent nanostrips separated by a characteristic distance in the range of 6-10 nm. The obtained results indicate that the underlying monolayer structure is the same for all J-aggregate polymorphs.

Details

ISSN :
15205207 and 15206106
Volume :
119
Database :
OpenAIRE
Journal :
The Journal of Physical Chemistry B
Accession number :
edsair.doi.dedup.....c8ffbeaebc6decf61566681d5e95ca41
Full Text :
https://doi.org/10.1021/acs.jpcb.5b07821