Back to Search
Start Over
A Bioreactor Technology for Modeling Fibrosis in Human and Rodent Precision‐Cut Liver Slices
- Source :
- Hepatology (Baltimore, Md.)
- Publication Year :
- 2019
- Publisher :
- Ovid Technologies (Wolters Kluwer Health), 2019.
-
Abstract
- Precision cut liver slices (PCLSs) retain the structure and cellular composition of the native liver and represent an improved system to study liver fibrosis compared to two-dimensional mono- or co-cultures. The aim of this study was to develop a bioreactor system to increase the healthy life span of PCLSs and model fibrogenesis. PCLSs were generated from normal rat or human liver, or fibrotic rat liver, and cultured in our bioreactor. PCLS function was quantified by albumin enzyme-linked immunosorbent assay (ELISA). Fibrosis was induced in PCLSs by transforming growth factor beta 1 (TGFβ1) and platelet-derived growth factor (PDGFββ) stimulation ± therapy. Fibrosis was assessed by gene expression, picrosirius red, and α-smooth muscle actin staining, hydroxyproline assay, and soluble ELISAs. Bioreactor-cultured PCLSs are viable, maintaining tissue structure, metabolic activity, and stable albumin secretion for up to 6 days under normoxic culture conditions. Conversely, standard static transwell-cultured PCLSs rapidly deteriorate, and albumin secretion is significantly impaired by 48 hours. TGFβ1/PDGFββ stimulation of rat or human PCLSs induced fibrogenic gene expression, release of extracellular matrix proteins, activation of hepatic myofibroblasts, and histological fibrosis. Fibrogenesis slowly progresses over 6 days in cultured fibrotic rat PCLSs without exogenous challenge. Activin receptor-like kinase 5 (Alk5) inhibitor (Alk5i), nintedanib, and obeticholic acid therapy limited fibrogenesis in TGFβ1/PDGFββ-stimulated PCLSs, and Alk5i blunted progression of fibrosis in fibrotic PCLS. Conclusion: We describe a bioreactor technology that maintains functional PCLS cultures for 6 days. Bioreactor-cultured PCLSs can be successfully used to model fibrogenesis and demonstrate efficacy of antifibrotic therapies. ispartof: HEPATOLOGY vol:70 issue:4 pages:1377-1391 ispartof: location:United States status: published
- Subjects :
- Liver Cirrhosis
Male
0301 basic medicine
Time Factors
medicine.medical_treatment
HEPATITIS-C
Rats, Sprague-Dawley
Tissue Culture Techniques
Extracellular matrix
Random Allocation
chemistry.chemical_compound
Bioreactors
0302 clinical medicine
Liver Biology/Pathobiology
Fibrosis
biology
Chemistry
Biopsy, Needle
INHIBITOR
Obeticholic acid
Immunohistochemistry
3. Good health
INCUBATION
ANIMAL-MODELS
Original Article
030211 gastroenterology & hepatology
Nintedanib
Life Sciences & Biomedicine
Sensitivity and Specificity
MECHANISMS
Andrology
03 medical and health sciences
Hydroxyproline
medicine
Animals
Humans
Science & Technology
Gastroenterology & Hepatology
Hepatology
Growth factor
Albumin
Original Articles
Transforming growth factor beta
medicine.disease
Coculture Techniques
Rats
Disease Models, Animal
MAINTENANCE
030104 developmental biology
Gene Expression Regulation
DRUG-METABOLISM
CELLS
biology.protein
RESPONSES
Subjects
Details
- ISSN :
- 15273350 and 02709139
- Volume :
- 70
- Database :
- OpenAIRE
- Journal :
- Hepatology
- Accession number :
- edsair.doi.dedup.....c8e123604b076370e134297b63abcdce
- Full Text :
- https://doi.org/10.1002/hep.30651