Back to Search Start Over

Terrain Amplification with Implicit 3D Features

Authors :
Axel Paris
James Gain
Eric Galin
Eric Guérin
Adrien Peytavie
Modélisation Géométrique, Géométrie Algorithmique, Fractales (GeoMod)
Laboratoire d'InfoRmatique en Image et Systèmes d'information (LIRIS)
Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-École Centrale de Lyon (ECL)
Université de Lyon-Université Lumière - Lyon 2 (UL2)-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Université Lumière - Lyon 2 (UL2)
Origami (Origami)
University of Cape Town
ANR HD Worlds
ANR-16-CE33-0001,HDWorlds,Modèles procéduraux paramétriques pour la représentation d'univers virtuels complexes(2016)
Source :
ACM Transactions on Graphics, ACM Transactions on Graphics, Association for Computing Machinery, 2019, 38 (5), ⟨10.1145/3342765⟩
Publication Year :
2019
Publisher :
HAL CCSD, 2019.

Abstract

While three-dimensional landforms, such as arches and overhangs, occupy a relatively small proportion of most computer-generated landscapes, they are distinctive and dramatic and have an outsize visual impact. Unfortunately, the dominant heightfield representation of terrain precludes such features, and existing in-memory volumetric structures are too memory intensive to handle larger scenes. In this article, we present a novel memory-optimized paradigm for representing and generating volumetric terrain based on implicit surfaces. We encode feature shapes and terrain geology using construction trees that arrange and combine implicit primitives. The landform primitives themselves are positioned using Poisson sampling, built using open shape grammars guided by stratified erosion and invasion percolation processes, and, finally, queried during polygonization. Users can also interactively author landforms using high-level modeling tools to create or edit the underlying construction trees, with support for iterative cycles of editing and simulation. We demonstrate that our framework is capable of importing existing large-scale heightfield terrains and amplifying them with such diverse structures as slot canyons, sea arches, stratified cliffs, fields of hoodoos, and complex karst cave networks.

Details

Language :
English
ISSN :
07300301 and 15577368
Database :
OpenAIRE
Journal :
ACM Transactions on Graphics, ACM Transactions on Graphics, Association for Computing Machinery, 2019, 38 (5), ⟨10.1145/3342765⟩
Accession number :
edsair.doi.dedup.....c8cfe9c475d334dc1ca7b7157844b662
Full Text :
https://doi.org/10.1145/3342765⟩