Back to Search Start Over

Atlas-based automatic segmentation of MR images: validation study on the brainstem in radiotherapy context

Authors :
Pierre-Yves Marcy
Olivier Commowick
Stéphane Chanalet
Jean-Louis Habrand
Nicholas Ayache
Francois Fauchon
Isabelle Rutten
Adel Courdi
Grégoire Malandain
Pierre-Yves Bondiau
Philippe Paquis
Medical imaging and robotics (EPIDAURE)
Inria Sophia Antipolis - Méditerranée (CRISAM)
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Centre de Lutte contre le Cancer Antoine Lacassagne [Nice] (UNICANCER/CAL)
UNICANCER-Université Côte d'Azur (UCA)
Analysis and Simulation of Biomedical Images (ASCLEPIOS)
Computational Radiology Laboratory [Boston] (CRL)
Brigham and Women's Hospital [Boston]-Boston Children's Hospital
Vision, Action et Gestion d'informations en Santé (VisAGeS)
Institut National de la Santé et de la Recherche Médicale (INSERM)-Inria Rennes – Bretagne Atlantique
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-SIGNAUX ET IMAGES NUMÉRIQUES, ROBOTIQUE (IRISA-D5)
Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA)
CentraleSupélec-Télécom Bretagne-Université de Rennes 1 (UR1)
Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National de Recherche en Informatique et en Automatique (Inria)-École normale supérieure - Rennes (ENS Rennes)-Université de Bretagne Sud (UBS)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes)
Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-CentraleSupélec-Télécom Bretagne-Université de Rennes 1 (UR1)
Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA)
Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-École normale supérieure - Rennes (ENS Rennes)-Université de Bretagne Sud (UBS)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes)
Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)
Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-Télécom Bretagne-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-Télécom Bretagne-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Télécom Bretagne-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)
Source :
International Journal of Radiation Oncology-Biology-Physics, International Journal of Radiation Oncology-Biology-Physics, Elsevier, 2005, 61 (1), pp.289-98. ⟨10.1016/j.ijrobp.2004.08.055⟩, International Journal of Radiation Oncology, Biology, Physics, International Journal of Radiation Oncology, Biology, Physics, 2005, 61 (1), pp.289-98. ⟨10.1016/j.ijrobp.2004.08.055⟩
Publication Year :
2004

Abstract

Purpose: Brain tumor radiotherapy requires the volume measurements and the localization of several individual brain structures. Any tool that can assist the physician to perform the delineation would then be of great help. Among segmentation methods, those that are atlas-based are appealing because they are able to segment several structures simultaneously, while preserving the anatomy topology. This study aims to evaluate such a method in a clinical context. Methods and Materials: The brain atlas is made of two three-dimensional (3D) volumes: the first is an artificial 3D magnetic resonance imaging (MRI); the second consists of the segmented structures in this artificial MRI. The elastic registration of the artificial 3D MRI against a patient 3D MRI dataset yields an elastic transformation that can be applied to the labeled image. The elastic transformation is obtained by minimizing the sum of the square differences of the image intensities and derived from the optical flow principle. This automatic delineation (AD) enables the mapping of the segmented structures onto the patient MRI. Parameters of the AD have been optimized on a set of 20 patients. Results are obtained on a series of 6 patients’ MRI. A comprehensive validation of the AD has been conducted on performance of atlas-based segmentation in a clinical context with volume, position, sensitivity, and specificity that are compared by a panel of seven experimented physicians for the brain tumor treatments. Results: Expert interobserver volume variability ranged from 16.70 cm 3 to 41.26 cm 3 . For patients, the ratio of minimal to maximal volume ranged from 48% to 70%. Median volume varied from 19.47 cm 3 to 27.66 cm 3 and volume of the brainstem calculated by AD varied from 17.75 cm 3 to 24.54 cm 3 . Medians of experts ranged, respectively, for sensitivity and specificity, from 0.75 to 0.98 and from 0.85 to 0.99. Median of AD were, respectively, 0.77 and 0.97. Mean of experts ranged, respectively, from 0.78 to 0.97 and from 0.86 to 0.99. Mean of AD were, respectively, 0.76 and 0.97. Conclusions: Results demonstrate that the method is repeatable, provides a good trade-off between accuracy and robustness, and leads to reproducible segmentation and labeling. These results can be improved by enriching the atlas with the rough information of tumor or by using different laws of deformation for the different structures. Qualitative results also suggest that this method can be used for automatic segmentation of other organs such as neck, thorax, abdomen, pelvis, and limbs. © 2005 Elsevier Inc. Brain tumors, Radiotherapy, Magnetic resonance imaging, Segmentation matching.

Details

ISSN :
03603016 and 1879355X
Volume :
61
Issue :
1
Database :
OpenAIRE
Journal :
International journal of radiation oncology, biology, physics
Accession number :
edsair.doi.dedup.....c8ceeb73b3b47f3e60607368709a660c
Full Text :
https://doi.org/10.1016/j.ijrobp.2004.08.055⟩