Back to Search
Start Over
Effects of Plant and Soil Amendment on Remediation Performance and Methane Mitigation in Petroleum-Contaminated Soil
- Source :
- Journal of Microbiology and Biotechnology. 31:104-114
- Publication Year :
- 2021
- Publisher :
- Journal of Microbiology and Biotechnology, 2021.
-
Abstract
- Petroleum-contaminated soil is considered among the most important potential anthropogenic atmospheric methane sources. Additionally, various rhizoremediation factors can affect methane emissions by altering soil ecosystem carbon cycles. Nonetheless, greenhouse gas emissions from soil have not been given due importance as a potentially relevant parameter in rhizoremediation techniques. Therefore, in this study we sought to investigate the effects of different plant and soil amendments on both remediation efficiencies and methane emission characteristics in dieselcontaminated soil. An indoor pot experiment consisting of three plant treatments (control, maize, tall fescue) and two soil amendments (chemical nutrient, compost) was performed for 95 days. Total petroleum hydrocarbon (TPH) removal efficiency, dehydrogenase activity, and alkB (i.e., an alkane compound-degrading enzyme) gene abundance were the highest in the tall fescue and maize soil system amended with compost. Compost addition enhanced both the overall remediation efficiencies, as well as pmoA (i.e., a methane-oxidizing enzyme) gene abundance in soils. Moreover, the potential methane emission of diesel-contaminated soil was relatively low when maize was introduced to the soil system. After microbial community analysis, various TPH-degrading microorganisms (Nocardioides, Marinobacter, Immitisolibacter, Acinetobacter, Kocuria, Mycobacterium, Pseudomonas, Alcanivorax) and methane-oxidizing microorganisms (Methylocapsa, Methylosarcina) were observed in the rhizosphere soil. The effects of major rhizoremediation factors on soil remediation efficiency and greenhouse gas emissions discussed herein are expected to contribute to the development of sustainable biological remediation technologies in response to global climate change.
- Subjects :
- 0106 biological sciences
Environmental remediation
engineering.material
complex mixtures
01 natural sciences
Applied Microbiology and Biotechnology
Soil
chemistry.chemical_compound
Pseudomonas
010608 biotechnology
Soil Pollutants
Environmental Restoration and Remediation
Plant Physiological Phenomena
Soil Microbiology
Rhizosphere
Compost
Composting
Microbiota
Atmospheric methane
AlkB Enzymes
General Medicine
Plants
Soil contamination
Hydrocarbons
Soil conditioner
Biodegradation, Environmental
Petroleum
chemistry
Environmental chemistry
Soil water
engineering
Environmental science
Total petroleum hydrocarbon
Methane
Biotechnology
Subjects
Details
- ISSN :
- 17388872 and 10177825
- Volume :
- 31
- Database :
- OpenAIRE
- Journal :
- Journal of Microbiology and Biotechnology
- Accession number :
- edsair.doi.dedup.....c89891d70738a82ae995a6b77ee36e84