Back to Search Start Over

Technical Documentation: The Economics of CO2 Transport by Pipeline Storage in Saline Aquifers and Oil Reserves

Authors :
Rubin, Edward
Berkenpas, Michael B.
McCoy, Sean T.
Publication Year :
2008
Publisher :
Carnegie Mellon University, 2008.

Abstract

Large reductions in carbon dioxide (CO2) emissions from fossil fuel use will be required to stabilize atmospheric concentrations of CO2 [1-5]. One option to reduce CO2 emissions to the atmosphere from large industrial sources— particularly fossil-fuel fired power plants—is carbon capture and storage (CCS); i.e., the capture of CO2 directly from anthropogenic sources and disposal of it in geological sinks for significant periods of time [6]. CCS requires CO2 to first be captured and compressed to high pressures, then transported to a storage site, where it is injected into a suitable geologic formation. Each of these steps—capture, transport, and storage—is capital and energy intensive, and will have a significant impact on the cost of production for electricity or other industrial commodities produced using CCS. However, with appropriate policy incentives, CCS could act as a potential “bridging technology” that would achieve significant CO2 emission reductions while allowing fossil fuels to be used until alternative energy sources are more widely deployed.

Details

Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....c88d4ec175a5bbdc87b742905c553e14
Full Text :
https://doi.org/10.1184/r1/6073508