Back to Search
Start Over
Presynaptic NMDA receptors control nociceptive transmission at the spinal cord level in neuropathic pain
- Source :
- Cell Mol Life Sci
- Publication Year :
- 2019
-
Abstract
- Chronic neuropathic pain is a debilitating condition that remains challenging to treat. Glutamate N-methyl-D-aspartate receptor (NMDAR) antagonists have been used to treat neuropathic pain, but the exact sites of their actions have been unclear until recently. Although conventionally postsynaptic, NMDARs are also expressed presynaptically, particularly at the central terminals of primary sensory neurons, in the spinal dorsal horn. However, presynaptic NMDARs in the spinal cord are normally quiescent and are not actively involved in physiological nociceptive transmission. In this review, we describe the emerging role of presynaptic NMDARs at the spinal cord level in chronic neuropathic pain and the implications of molecular mechanisms for more effective treatment. Recent studies indicate that presynaptic NMDAR activity at the spinal cord level is increased in several neuropathic pain conditions but not in chronic inflammatory pain. Increased presynaptic NMDAR activity can potentiate glutamate release from primary afferent terminals to spinal dorsal horn neurons, which is crucial for the synaptic plasticity associated with neuropathic pain caused by traumatic nerve injury and chemotherapy-induced peripheral neuropathy. Furthermore, α2δ-1, previously considered a calcium channel subunit, can directly interact with NMDARs through its C-terminus to increase presynaptic NMDAR activity by facilitating synaptic trafficking of α2δ-1-NMDAR complexes in neuropathic pain caused by chemotherapeutic agents and peripheral nerve injury. Targeting α2δ-1-bound NMDARs with gabapentinoids or α2δ-1 C-terminus peptides can attenuate nociceptive drive form primary sensory nerves to dorsal horn neurons in neuropathic pain.
- Subjects :
- Nociception
Gabapentin
Pregabalin
Receptors, Presynaptic
Receptors, N-Methyl-D-Aspartate
Article
Nociceptive Pain
Cellular and Molecular Neuroscience
Mice
Dorsal root ganglion
Medicine
Animals
Molecular Biology
Pharmacology
business.industry
musculoskeletal, neural, and ocular physiology
Nociceptors
Cell Biology
Spinal cord
medicine.disease
Rats
medicine.anatomical_structure
Peripheral neuropathy
nervous system
Spinal Cord
Neuropathic pain
Peripheral nerve injury
Molecular Medicine
Neuralgia
business
Neuroscience
medicine.drug
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- Cell Mol Life Sci
- Accession number :
- edsair.doi.dedup.....c885394c668676317159685468d9deb4