Back to Search
Start Over
Pronociceptive role of dynorphins in uninjured animals: N -ethylmaleimide-induced nociceptive behavior mediated through inhibition of dynorphin degradation
- Source :
- Pain. 113:301-309
- Publication Year :
- 2005
- Publisher :
- Ovid Technologies (Wolters Kluwer Health), 2005.
-
Abstract
- Intrathecal (i.t.) administration into mice of N-ethylmaleimide (NEM), a cysteine protease inhibitor, produced a characteristic behavioral response, the biting and/or licking of the hindpaw and the tail along with slight hindlimb scratching directed toward the flank. The behavior induced by NEM was inhibited by the intraperitoneal injection of morphine. We have recently reported that dynorphin A and, more potently big dynorphin, consisting of dynorphins A and B, produce the same type of nociceptive response whereas dynorphin B does not [Tan-No K, Esashi A, Nakagawasai O, Niijima F, Tadano T, Sakurada C, Sakurada T, Bakalkin G, Terenius L, Kisara K. Intrathecally administered big dynorphin, a prodynorphin-derived peptide, produces nociceptive behavior through an N-methyl-d-aspartate receptor mechanism. Brain Res 2002;952:7-14]. The NEM-induced nociceptive behavior was inhibited by pretreatment with dynorphin A- or dynorphin B-antiserum and each antiserum also reduced the nociceptive effects of i.t.-injected synthetic big dynorphin. The characteristic NEM-evoked response was not observed in prodynorphin knockout mice. Naloxone, an opioid receptor antagonist, had no effects on the NEM-induced behavior. Ifenprodil, arcaine and agmatine, antagonists at the polyamine recognition site on the N-methyl-D-aspartate (NMDA) receptor ion-channel complex, and MK-801, an NMDA ion-channel blocker inhibited the NEM-induced effects. Ro25-6981, an antagonist of the NMDA receptor subtype containing NR2B subunit was not active. NEM completely inhibited degradation of dynorphin A by soluble and particulate fractions of mouse spinal cord. Collectively, the results demonstrate that endogenous prodynorphin-derived peptides are pronociceptive in uninjured animals, and required for the NEM-induced behavior. The NEM effects may be mediated through inhibition of the degradation of endogenous dynorphins, presumably big dynorphin that in turn activates the NMDA receptor ion-channel complex by acting on the polyamine recognition site.
- Subjects :
- Male
Narcotics
medicine.medical_specialty
Time Factors
Agmatine
medicine.drug_class
Biguanides
(+)-Naloxone
Dynorphin
Dynorphins
Big dynorphin
Nociceptin Receptor
Mice
chemistry.chemical_compound
Piperidines
Opioid receptor
Internal medicine
polycyclic compounds
medicine
Ifenprodil
Animals
Drug Interactions
heterocyclic compounds
Enzyme Inhibitors
Protein Precursors
Injections, Spinal
Mice, Knockout
Analysis of Variance
Behavior, Animal
Dose-Response Relationship, Drug
Morphine
Immune Sera
musculoskeletal, neural, and ocular physiology
Dynorphin B
Dynorphin A
Enkephalins
Mice, Inbred C57BL
Anesthesiology and Pain Medicine
Endocrinology
Spinal Cord
nervous system
Neurology
chemistry
Ethylmaleimide
Receptors, Opioid
NMDA receptor
Neurology (clinical)
Dizocilpine Maleate
Excitatory Amino Acid Antagonists
Subjects
Details
- ISSN :
- 03043959
- Volume :
- 113
- Database :
- OpenAIRE
- Journal :
- Pain
- Accession number :
- edsair.doi.dedup.....c869c0107b4d4817f70c818f65030d9d
- Full Text :
- https://doi.org/10.1016/j.pain.2004.11.004