Back to Search Start Over

Discrete Splittings of the Necklace

Authors :
Frédéric Meunier
Laboratoire Ville, Mobilité, Transport (LVMT )
École des Ponts ParisTech (ENPC)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Université Paris-Est Marne-la-Vallée (UPEM)
Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Université Paris-Est Marne-la-Vallée (UPEM)-École des Ponts ParisTech (ENPC)
Source :
Mathematics of Operations Research, Mathematics of Operations Research, INFORMS, 2008, 33 (3), pp.678. ⟨10.1287/moor.1080.0311⟩
Publication Year :
2008
Publisher :
Institute for Operations Research and the Management Sciences (INFORMS), 2008.

Abstract

International audience; This paper deals with, direct proofs and combinatorial proofs of the famous necklace theorem of Alon, Goldberg, and West. The new results are a direct proof for the case of two thieves and three types of beads, and an efficient constructive proof for the general case with two thieves. This last proof uses a theorem of Ky Fan which is a version of Tucker's lemma concerning cubical complexes instead of Simplicial complexes. © 2008 INFORMS.

Details

ISSN :
15265471 and 0364765X
Volume :
33
Database :
OpenAIRE
Journal :
Mathematics of Operations Research
Accession number :
edsair.doi.dedup.....c867df2ac3239b4ab79a1478ed526c9c