Back to Search Start Over

Accelerated and Exacerbated Effects of High Dietary Fat on Neuronal Damage Induced by Transient Cerebral Ischemia in the Gerbil Septum

Authors :
Bing Chun Yan
Moo-Ho Won
Seung Hwan Cheon
Joon Ha Park
Yun Lyul Lee
Min Joung Kim
Ji Hyeon Ahn
Jun Hwi Cho
In Hye Kim
Bai Hui Chen
Jae-Chul Lee
Yoo Seok Park
Source :
Endocrinology and Metabolism, Vol 29, Iss 3, Pp 328-335 (2014), Endocrinology and Metabolism
Publication Year :
2014
Publisher :
Academya Publishing Co., 2014.

Abstract

Background: Obesity induced by high-fat diet (HFD) is one of the most widespread metabolic disorders in current society. However, there has been little research regarding the effects of HFD-induced obesity in the septa of animal models of cerebral ischemia. Therefore, in the present study, we investigated septal effects of HFD on neuronal damage and gliosis induced by transient cerebral ischemia. Methods: Body weight, blood glucose levels and serum lipid profiles levels were measured both in the normal diet (ND) and HFD-group. We also investigated the effects of ND and HFD on neuronal damage and gliosis in the septum after transient cerebral ischemia using immunohistochemistry. Results: The levels of blood glucose, serum triglyceride, and total cholesterol were significantly increased in the HFD-fed gerbils compared with the ND-fed gerbils, although body weight was not significantly changed after HFD feeding. In the ND-fed gerbils, ischemia-induced neuronal damage was found in the septohippocampal nucleus (SHN) of the septum 7 days after ischemia. In the HFD-fed gerbils, ischemia-induced neuronal damage in the SHN was much more severe compared with that of the ND-fed gerbils 4 and 7 days after ischemia. In addition, we found that ischemia-induced glial activation including astrocytes and microglia was accelerated and exacerbated in the HFD-fed gerbils compared with that in the ND-fed gerbils. Conclusion: These results indicate that HFD can lead to much more severe effects in ischemia-induced neuronal damage/death in the septum after ischemia-reperfusion, and that it may be associated with accelerated change in glial activation.

Details

Language :
English
ISSN :
20935978
Volume :
29
Issue :
3
Database :
OpenAIRE
Journal :
Endocrinology and Metabolism
Accession number :
edsair.doi.dedup.....c854916cd480418ca73c3f5797f85166