Back to Search Start Over

Spike trains statistics in integrate and fire models: exact results

Authors :
Bruno Cessac
Hassan Roland Nasser
Juan Carlos Vasquez
NEUROMATHCOMP
Inria Sophia Antipolis - Méditerranée (CRISAM)
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-INRIA Rocquencourt
Institut National de Recherche en Informatique et en Automatique (Inria)-École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Nice Sophia Antipolis (... - 2019) (UNS)
COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)
Institut National de Recherche en Informatique et en Automatique (Inria)-École normale supérieure - Paris (ENS-PSL)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Nice Sophia Antipolis (1965 - 2019) (UNS)
Source :
HAL, Cinquième conférence plénière française de Neurosciences Computationnelles, "Neurocomp'10", Cinquième conférence plénière française de Neurosciences Computationnelles, "Neurocomp'10", Aug 2010, Lyon, France

Abstract

We briefly review and highlight the consequences of rigorous and exact results obtained in \cite{cessac:10}, characterizing the statistics of spike trains in a network of leaky Integrate-and-Fire neurons, where time is discrete and where neurons are subject to noise, without restriction on the synaptic weights connectivity. The main result is that spike trains statistics are characterized by a Gibbs distribution, whose potential is explicitly computable. This establishes, on one hand, a rigorous ground for the current investigations attempting to characterize real spike trains data with Gibbs distributions, such as the Ising-like distribution, using the maximal entropy principle. However, it transpires from the present analysis that the Ising model might be a rather weak approximation. Indeed, the Gibbs potential (the formal "Hamiltonian") is the log of the so-called "conditional intensity" (the probability that a neuron fires given the past of the whole network). But, in the present example, this probability has an infinite memory, and the corresponding process is non-Markovian (resp. the Gibbs potential has infinite range). Moreover, causality implies that the conditional intensity does not depend on the state of the neurons at the \textit{same time}, ruling out the Ising model as a candidate for an exact characterization of spike trains statistics. However, Markovian approximations can be proposed whose degree of approximation can be rigorously controlled. In this setting, Ising model appears as the "next step" after the Bernoulli model (independent neurons) since it introduces spatial pairwise correlations, but not time correlations. The range of validity of this approximation is discussed together with possible approaches allowing to introduce time correlations, with algorithmic extensions.<br />Comment: 6 pages, submitted to conference NeuroComp2010 http://2010.neurocomp.fr/; Bruno Cessac http://www-sop.inria.fr/neuromathcomp/

Details

Database :
OpenAIRE
Journal :
HAL, Cinquième conférence plénière française de Neurosciences Computationnelles, "Neurocomp'10", Cinquième conférence plénière française de Neurosciences Computationnelles, "Neurocomp'10", Aug 2010, Lyon, France
Accession number :
edsair.doi.dedup.....c819d653f2e2e433f62c5cb7d8f30731