Back to Search
Start Over
On the consistency of orthology relationships
- Source :
- BMC Bioinformatics, BMC Bioinformatics, 2016, 17 (S14), pp.11-14. ⟨10.1186/s12859-016-1267-3⟩, BMC Bioinformatics, BioMed Central, 2016, 17 (S14), pp.11-14. ⟨10.1186/s12859-016-1267-3⟩
- Publisher :
- Springer Nature
-
Abstract
- Background Orthologs inference is the starting point of most comparative genomics studies, and a plethora of methods have been designed in the last decade to address this challenging task. In this paper we focus on the problems of deciding consistency with a species tree (known or not) of a partial set of orthology/paralogy relationships \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {C}$\end{document}C on a collection of n genes. Results We give the first polynomial algorithm – more precisely a O(n 3) time algorithm – to decide whether \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {C}$\end{document}C is consistent, even when the species tree is unknown. We also investigate a biologically meaningful optimization version of these problems, in which we wish to minimize the number of duplication events; unfortunately, we show that all these optimization problems are NP-hard and are unlikely to have good polynomial time approximation algorithms. Conclusions Our polynomial algorithm for checking consistency has been implemented in Python and is available at https://github.com/UdeM-LBIT/OrthoPara-ConstraintChecker.
- Subjects :
- 0301 basic medicine
Theoretical computer science
Optimization problem
Computer science
Inference
Para-NP hardness
0102 computer and information sciences
[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM]
01 natural sciences
Polynomial algorithm
Biochemistry
Homology (biology)
03 medical and health sciences
User-Computer Interface
Structural Biology
Gene duplication
Orthology detection
Polynomial-time algorithms
Gene
Molecular Biology
computer.programming_language
Internet
Applied Mathematics
Research
Genomics
Python (programming language)
Computer Science Applications
030104 developmental biology
010201 computation theory & mathematics
computer
Algorithms
Inapproximability
Subjects
Details
- Language :
- English
- ISSN :
- 14712105
- Volume :
- 17
- Issue :
- S14
- Database :
- OpenAIRE
- Journal :
- BMC Bioinformatics
- Accession number :
- edsair.doi.dedup.....c7f250dff6ff2b2b7d5c1e7714cea62a
- Full Text :
- https://doi.org/10.1186/s12859-016-1267-3