Back to Search
Start Over
Single-cell multiplexed cytokine profiling of CD19 CAR-T cells reveals a diverse landscape of polyfunctional antigen-specific response
- Source :
- Journal for Immunotherapy of Cancer, Journal for ImmunoTherapy of Cancer, Vol 5, Iss 1, Pp 1-16 (2017)
- Publication Year :
- 2017
-
Abstract
- Background It remains challenging to characterize the functional attributes of chimeric antigen receptor (CAR)-engineered T cell product targeting CD19 related to potency and immunotoxicity ex vivo, despite promising in vivo efficacy in patients with B cell malignancies. Methods We employed a single-cell, 16-plex cytokine microfluidics device and new analysis techniques to evaluate the functional profile of CD19 CAR-T cells upon antigen-specific stimulation. CAR-T cells were manufactured from human PBMCs transfected with the lentivirus encoding the CD19-BB-z transgene and expanded with anti-CD3/anti-CD28 coated beads. The enriched CAR-T cells were stimulated with anti-CAR or control IgG beads, stained with anti-CD4 RPE and anti-CD8 Alexa Fluor 647 antibodies, and incubated for 16 h in a single-cell barcode chip (SCBC). Each SCBC contains ~12,000 microchambers, covered with a glass slide that was pre-patterned with a complete copy of a 16-plex antibody array. Protein secretions from single CAR-T cells were captured and subsequently analyzed using proprietary software and new visualization methods. Results We demonstrate a new method for single-cell profiling of CD19 CAR-T pre-infusion products prepared from 4 healthy donors. CAR-T single cells exhibited a marked heterogeneity of cytokine secretions and polyfunctional (2+ cytokine) subsets specific to anti-CAR bead stimulation. The breadth of responses includes anti-tumor effector (Granzyme B, IFN-γ, MIP-1α, TNF-α), stimulatory (GM-CSF, IL-2, IL-8), regulatory (IL-4, IL-13, IL-22), and inflammatory (IL-6, IL-17A) functions. Furthermore, we developed two new bioinformatics tools for more effective polyfunctional subset visualization and comparison between donors. Conclusions Single-cell, multiplexed, proteomic profiling of CD19 CAR-T product reveals a diverse landscape of immune effector response of CD19 CAR-T cells to antigen-specific challenge, providing a new platform for capturing CAR-T product data for correlative analysis. Additionally, such high dimensional data requires new visualization methods to further define precise polyfunctional response differences in these products. The presented biomarker capture and analysis system provides a more sensitive and comprehensive functional assessment of CAR-T pre-infusion products and may provide insights into the safety and efficacy of CAR-T cell therapy. Electronic supplementary material The online version of this article (10.1186/s40425-017-0293-7) contains supplementary material, which is available to authorized users.
- Subjects :
- 0301 basic medicine
Male
Cancer Research
Microfluidic microdevice
Antibody microarray
medicine.medical_treatment
T cell
Immunology
Antigens, CD19
Receptors, Antigen, T-Cell
Biology
lcsh:RC254-282
CD19
Cell therapy
03 medical and health sciences
0302 clinical medicine
medicine
Precision profiling
Immunology and Allergy
Humans
B cell
Polyfunctionality
Pharmacology
Single-cell proteomics
lcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogens
Molecular biology
Chimeric antigen receptor
Granzyme B
030104 developmental biology
medicine.anatomical_structure
Cytokine
Oncology
030220 oncology & carcinogenesis
biology.protein
Molecular Medicine
Cytokines
Female
CD19 CAR-T cell product
Research Article
Subjects
Details
- ISSN :
- 20511426
- Volume :
- 5
- Issue :
- 1
- Database :
- OpenAIRE
- Journal :
- Journal for immunotherapy of cancer
- Accession number :
- edsair.doi.dedup.....c7e045fc193dd2f8e6502041aa9c43fb