Cite
Asteroid: the PyTorch-based audio source separation toolkit for researchers
MLA
Ariel Frank, et al. Asteroid: The PyTorch-Based Audio Source Separation Toolkit for Researchers. Oct. 2020. EBSCOhost, widgets.ebscohost.com/prod/customlink/proxify/proxify.php?count=1&encode=0&proxy=&find_1=&replace_1=&target=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsair&AN=edsair.doi.dedup.....c7bd860f867da876db8feffc5d8aa9bd&authtype=sso&custid=ns315887.
APA
Ariel Frank, Emmanuel Vincent, Fabian-Robert Stöter, Mathieu Hu, Joris Cosentino, Manuel Pariente, Samuele Cornell, Sunit Sivasankaran, David Ditter, Efthymios Tzinis, Juan M. Martín-Doñas, Antoine Deleforge, Michel Olvera, & Jens Heitkaemper. (2020). Asteroid: the PyTorch-based audio source separation toolkit for researchers.
Chicago
Ariel Frank, Emmanuel Vincent, Fabian-Robert Stöter, Mathieu Hu, Joris Cosentino, Manuel Pariente, Samuele Cornell, et al. 2020. “Asteroid: The PyTorch-Based Audio Source Separation Toolkit for Researchers,” October. http://widgets.ebscohost.com/prod/customlink/proxify/proxify.php?count=1&encode=0&proxy=&find_1=&replace_1=&target=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsair&AN=edsair.doi.dedup.....c7bd860f867da876db8feffc5d8aa9bd&authtype=sso&custid=ns315887.