Back to Search
Start Over
Reversible coordination-induced spin-state switching in complexes on metal surfaces
- Source :
- Nature nanotechnology 15(1), 18-21 (2020). doi:10.1038/s41565-019-0594-8, Nature Nanotechnology, Nature Nanotechnology, Nature Publishing Group, 2020, 15 (1), pp.18-21. ⟨10.1038/s41565-019-0594-8⟩, Nature Nanotechnology, Nature Publishing Group, 2019, 15 (1), pp.18-21. ⟨10.1038/s41565-019-0594-8⟩, Nature Nanotechnology, 2020, 15 (1), pp.18-21. ⟨10.1038/s41565-019-0594-8⟩
- Publication Year :
- 2020
- Publisher :
- Nature Publishing Group, 2020.
-
Abstract
- Molecular spin switches are attractive candidates for controlling the spin polarization developing at the interface between molecules and magnetic metal surfaces1,2, which is relevant for molecular spintronics devices3–5. However, so far, intrinsic spin switches such as spin-crossover complexes have suffered from fragmentation or loss of functionality following adsorption on metal surfaces, with rare exceptions6–9. Robust metal–organic platforms, on the other hand, rely on external axial ligands to induce spin switching10–14. Here we integrate a spin switching functionality into robust complexes, relying on the mechanical movement of an axial ligand strapped to the porphyrin ring. Reversible interlocked switching of spin and coordination, induced by electron injection, is demonstrated on Ag(111) for this class of compounds. The stability of the two spin and coordination states of the molecules exceeds days at 4 K. The potential applications of this switching concept go beyond the spin functionality, and may turn out to be useful for controlling the catalytic activity of surfaces15. Spin-crossover complexes often lose their functionality upon adsorption on metal surfaces. Here, a metal–organic complex adsorbed on a silver surface undergoes reversible interlocked spin and coordination switching, which is enabled by an intramolecular feedback mechanism controlling the position of an axial ligand strapped to the complex.
- Subjects :
- Materials science
Spin states
Biomedical Engineering
Bioengineering
02 engineering and technology
010402 general chemistry
01 natural sciences
Metal
chemistry.chemical_compound
Molecule
General Materials Science
Electrical and Electronic Engineering
[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat]
[PHYS]Physics [physics]
Spin polarization
Spintronics
Ligand
[CHIM.ORGA]Chemical Sciences/Organic chemistry
021001 nanoscience & nanotechnology
Condensed Matter Physics
Porphyrin
Atomic and Molecular Physics, and Optics
3. Good health
0104 chemical sciences
chemistry
Chemical physics
Intramolecular force
visual_art
visual_art.visual_art_medium
Condensed Matter::Strongly Correlated Electrons
[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]
0210 nano-technology
ddc:600
Subjects
Details
- Language :
- English
- ISSN :
- 17483387 and 17483395
- Database :
- OpenAIRE
- Journal :
- Nature nanotechnology 15(1), 18-21 (2020). doi:10.1038/s41565-019-0594-8, Nature Nanotechnology, Nature Nanotechnology, Nature Publishing Group, 2020, 15 (1), pp.18-21. ⟨10.1038/s41565-019-0594-8⟩, Nature Nanotechnology, Nature Publishing Group, 2019, 15 (1), pp.18-21. ⟨10.1038/s41565-019-0594-8⟩, Nature Nanotechnology, 2020, 15 (1), pp.18-21. ⟨10.1038/s41565-019-0594-8⟩
- Accession number :
- edsair.doi.dedup.....c79c1178a5ac635740777a8012ce6131
- Full Text :
- https://doi.org/10.1038/s41565-019-0594-8