Back to Search
Start Over
From static to temporal network theory – applications to functional brain connectivity
- Source :
- Network Neuroscience, Vol 1, Iss 2, Pp 69-99 (2017)
- Publication Year :
- 2016
- Publisher :
- Cold Spring Harbor Laboratory, 2016.
-
Abstract
- Network neuroscience has become an established paradigm to tackle questions related to the functional and structural connectome of the brain. Recently, interest has been growing in examining the temporal dynamics of the brain’s network activity. Although different approaches to capturing fluctuations in brain connectivity have been proposed, there have been few attempts to quantify these fluctuations using temporal network theory. This theory is an extension of network theory that has been successfully applied to the modeling of dynamic processes in economics, social sciences, and engineering article but it has not been adopted to a great extent within network neuroscience. The objective of this article is twofold: (i) to present a detailed description of the central tenets of temporal network theory and describe its measures, and; (ii) to apply these measures to a resting-state fMRI dataset to illustrate their utility. Furthermore, we discuss the interpretation of temporal network theory in the context of the dynamic functional brain connectome. All the temporal network measures and plotting functions described in this article are freely available as the Python package Teneto. Temporal network theory is a subfield of network theory that has had limited application to date within network neuroscience. The aims of this work are to introduce temporal network theory, define the metrics relevant to the context of network neuroscience, and illustrate their potential by analyzing a resting-state fMRI dataset. We found both between-subjects and between-task differences that illustrate the potential for these tools to be applied in a wider context. Our tools for analyzing temporal networks have been released in a Python package called Teneto.
- Subjects :
- 0301 basic medicine
Computer science
Network theory
lcsh:RC321-571
Resting-state
03 medical and health sciences
Functional brain
0302 clinical medicine
Artificial Intelligence
Functional connectome
lcsh:Neurosciences. Biological psychiatry. Neuropsychiatry
Dynamic functional connectivity
Resting state fMRI
Quantitative Biology::Neurons and Cognition
business.industry
Applied Mathematics
General Neuroscience
Temporal network theory
Temporal networks
Structural connectome
Computer Science Applications
030104 developmental biology
Connectome
Artificial intelligence
business
Neuroscience
030217 neurology & neurosurgery
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- Network Neuroscience, Vol 1, Iss 2, Pp 69-99 (2017)
- Accession number :
- edsair.doi.dedup.....c7800ed52e98a2db3915d557e567f106
- Full Text :
- https://doi.org/10.1101/096461