Back to Search Start Over

Acoustic absorption of solid foams with thin membranes

Authors :
Caroline Derec
Florence Elias
Fabien Chevillotte
Valentin Leroy
C Gaulon
Juliette Pierre
Wiebke Drenckhan
François-Xavier Bécot
Luc Jaouen
Matière et Systèmes Complexes (MSC (UMR_7057))
Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
Institut Jean Le Rond d'Alembert (DALEMBERT)
Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Matelys - Acoustique et Vibrations
Matelys
Université Pierre et Marie Curie - Paris 6 (UPMC)
Institut Charles Sadron (ICS)
Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et nanosciences d'Alsace
Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique
Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)
Modélisation, Propagation et Imagerie Acoustique (IJLRDA-MPIA)
Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Physics
Trinity College Dublin
Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)
Université de Strasbourg (UNISTRA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique
Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Matériaux et nanosciences d'Alsace (FMNGE)
Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
Leroy, Valentin
Matière et Systèmes Complexes ( MSC )
Université Paris Diderot - Paris 7 ( UPD7 ) -Centre National de la Recherche Scientifique ( CNRS )
Institut Jean Le Rond d'Alembert ( DALEMBERT )
Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Centre National de la Recherche Scientifique ( CNRS )
Université Pierre et Marie Curie - Paris 6 ( UPMC )
Institut Charles Sadron ( ICS )
Université de Strasbourg ( UNISTRA ) -Centre National de la Recherche Scientifique ( CNRS ) -Matériaux et nanosciences d'Alsace
Université de Strasbourg ( UNISTRA ) -Université de Haute-Alsace (UHA) Mulhouse - Colmar ( Université de Haute-Alsace (UHA) ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Strasbourg ( UNISTRA ) -Université de Haute-Alsace (UHA) Mulhouse - Colmar ( Université de Haute-Alsace (UHA) ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Centre National de la Recherche Scientifique ( CNRS ) -Réseau nanophotonique et optique
Université de Strasbourg ( UNISTRA ) -Université de Haute-Alsace (UHA) Mulhouse - Colmar ( Université de Haute-Alsace (UHA) ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Strasbourg ( UNISTRA )
Laboratoire Matière et Systèmes Complexes ( Laboratoire MSC )
Université Paris Diderot - Paris 7 ( UPD7 ) -UFR de Physique
Drenckhan-Andreatta, Wiebke
Université de Strasbourg (UNISTRA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE)
Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique
Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)
Source :
Applied Physics Letters, Applied Physics Letters, American Institute of Physics, 2018, 112 (26), pp.261904, Applied Physics Letters, American Institute of Physics, 2018, 112 (26), pp.261904. ⟨10.1063/1.5025407⟩, Applied Physics Letters, 2018, 112 (26), pp.261904. ⟨10.1063/1.5025407⟩, HAL
Publication Year :
2018
Publisher :
HAL CCSD, 2018.

Abstract

We measured the acoustic absorption, on the 0.5-6 kHz frequency range, of polyurethane foams with mean pore diameters between 0.6 and 3.2 mm. Two types of foams were investigated: classical open-cells ones versus membrane foams, in which thin polyurethane membranes were preserved during solidification. Interestingly , the latter presented better absorption abilities, indicating that membranes could be an asset for sound absorption. Noise pollution has become a major problem in our modern life. Industrial and academic research has continuously tried to design more efficient soundproofing materials. Recently, exotic stuctures have been considered, using the concept of double-porosity 1,2 or introducing low frequency resonators to enhance the dissipation. 3–5 Traditionally , sound absorbers have been porous media, such as mineral wools or foams. A first general rule for their efficiency is that no obstacle should prevent the sound from propagating in the medium, otherwise the acoustic energy is reflected back instead of being absorbed. For foams, for example, it means that open-cell structures are preferred. On the other hand, the physical picture is that when sound penetrates such a medium, it loses a lot of energy because of the large surface area it can interact with. As a rule of thumb, one finds that good absorption is obtained when the typical pore size corresponds to the heat and viscous diffusive length in air, which is of the order of 50 µm at 2 kHz, for example. Hence, open-cell porous materials with pores sizes of tens of micrometers are good candidates for efficient sound absorption and are therefore used extensively for sound insulation. 6,7 In this letter we show that there are exceptions to these established rules: closed-cell foams with millimeter-sized pores can actually be good sound absorbers. The foams we studied were provided by the company Foampartner. They were made of polyurethane, with a porosity (air volume fraction) of 98%. Their most interesting feature, for us, was that most of the membranes which separate neighbouring pores (Fig. 1) were preserved during solidification. 8 As these membranes are not desired for most of the applications, the manufacturer employs a technique by which the membranes a) Electronic

Details

Language :
English
ISSN :
00036951
Database :
OpenAIRE
Journal :
Applied Physics Letters, Applied Physics Letters, American Institute of Physics, 2018, 112 (26), pp.261904, Applied Physics Letters, American Institute of Physics, 2018, 112 (26), pp.261904. ⟨10.1063/1.5025407⟩, Applied Physics Letters, 2018, 112 (26), pp.261904. ⟨10.1063/1.5025407⟩, HAL
Accession number :
edsair.doi.dedup.....c74c96451dafd59be5906db5a6e0cf03