Back to Search Start Over

Isometric actions on Lp-spaces: dependence on the value of p

Authors :
Marrakchi, Amine
de la Salle, Mikael
Unité de Mathématiques Pures et Appliquées (UMPA-ENSL)
École normale supérieure - Lyon (ENS Lyon)-Centre National de la Recherche Scientifique (CNRS)
ANR-10-LABX-0070,MILYON,Community of mathematics and fundamental computer science in Lyon(2010)
ANR-16-CE40-0022,AGIRA,Actions de Groupes, Isométries, Rigidité et Aléa(2016)
ANR-19-CE40-0002,ANCG,Analyse non commutative sur les groupes et les groupes quantiques(2019)
École normale supérieure de Lyon (ENS de Lyon)-Centre National de la Recherche Scientifique (CNRS)
Publication Year :
2020
Publisher :
arXiv, 2020.

Abstract

Answering a question by Chatterji--Dru\c{t}u--Haglund, we prove that, for every locally compact group $G$, there exists a critical constant $p_G \in [0,\infty]$ such that $G$ admits a continuous affine isometric action on an $L_p$ space ($02$. We also prove the stability of this critical constant $p_G$ under $L_p$ measure equivalence, answering a question of Fisher. We use this to show that for every connected semisimple Lie group $G$ and for every lattice $\Gamma < G$, we have $p_\Gamma=p_G$.<br />Comment: v1: 10 pages v2: 20 pages. Added : study of critical parameters for semisimple Lie groups and their lattices, and of their behaviour under quantitative measure equivalence; integrability properties of lattices v3: 24 pages. Added : discussion of harmonic cocycles and and actions on non-commutative Lp spaces coming from state-preserving actions

Details

Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....c729da6c39a8007dd2283ebc295b5365
Full Text :
https://doi.org/10.48550/arxiv.2001.02490