Back to Search Start Over

Rapid Determination of Quinolone Resistance in Acinetobacter spp

Authors :
Andrea M. Hujer
Karrie Goglin
Mark W. Eshoo
Jodi M. Thomson
David J. Ecker
Philip N. Rather
Christian Massire
Robert A. Bonomo
Rangarajan Sampath
Thuy Trang D. Pennella
Kristine M. Hujer
Andrea Endimiani
Lawrence B. Blyn
Mark Raymond Adams
Source :
Journal of Clinical Microbiology. 47:1436-1442
Publication Year :
2009
Publisher :
American Society for Microbiology, 2009.

Abstract

In the treatment of serious bacterial infections, the rapid institution of appropriate antimicrobial chemotherapy may be lifesaving. Choosing the correct antibiotic or combination of antibiotics is becoming very important, as multidrug resistance is found in many pathogens. Using a collection of 75 well-characterized multidrug-resistant (MDR) Acinetobacter sp. isolates, we show that PCR followed by electrospray ionization mass spectrometry (PCR/ESI-MS) and base composition analysis of PCR amplification products can quickly and accurately identify quinolone resistance mediated by mutations in the quinolone resistance-determining regions of gyrA and parC , two essential housekeeping genes. Single point mutations detected by PCR/ESI-MS in parC (found in 55/75 of the isolates) and in gyrA (found in 66/75 of the isolates) correlated with susceptibility testing and sequencing. By targeting resistance determinants that are encoded by genes with highly conserved DNA sequences (e.g., gyrA and parC ), we demonstrate that PCR/ESI-MS can provide critical information for resistance determinant identification and can inform therapeutic decision making in the treatment of Acinetobacter sp. infections.

Details

ISSN :
1098660X and 00951137
Volume :
47
Database :
OpenAIRE
Journal :
Journal of Clinical Microbiology
Accession number :
edsair.doi.dedup.....c68e10ffb3011cbc4d1120c89fb9a7df