Back to Search Start Over

Inactivation of human coagulation factor X by a protease of the pathogen Capnocytophaga canimorsus

Authors :
J. M. Dogne
Jonathan Douxfils
Francesco Renzi
Estelle Hess
Katrin Hack
Frédéric Lauber
Guy R. Cornelis
Source :
Hack, K, Renzi, F, Hess, E, Lauber, F, Douxfils, J, Dogné, J M & Cornelis, G R 2016, ' Inactivation of human coagulation factor X by a protease of the pathogen Capnocytophaga canimorsus ', Journal of thrombosis and haemostasis : JTH . https://doi.org/10.1111/jth.13605
Publication Year :
2016
Publisher :
Wiley-Blackwell, 2016.

Abstract

Essentials Capnocytophaga canimorsus causes severe dog bite related blood stream infections. We investigated if C. canimorsus contributes to bleeding abnormalities during infection. The C. canimorsus protease CcDPP7 causes factor X dysfunction by N-terminal cleavage. CcDPP7 inhibits coagulation in vivo, which could promote immune evasion and trigger hemorrhage.Background Capnocytophaga canimorsus is a Gram-negative bacterium that is present in the oral flora of dogs and causes fulminant sepsis in humans who have been bitten, licked, or scratched. In patients, bleeding abnormalities, such as petechiae, purpura fulminans, or disseminated intravascular coagulation (DIC), occur frequently. Objective To investigate whether C. canimorsus could actively contribute to these bleeding abnormalities. Methods Calibrated automated thrombogram and clotting time assays were performed to assess the anticoagulant activity of C. canimorsus 5 (Cc5), a strain isolated from a fatal human infection. Clotting factor activities were measured with factor-deficient plasma. Factor X cleavage was monitored with the radiolabeled zymogen and western blotting. Mutagenesis of Cc5 genes encoding putative serine proteases was performed to identify the protease that cleaves FX. Protein purification was performed with affinity chromatography. Edman degradation allowed the detection of N-terminal cleavage of FX. Tail bleeding times were measured in mice. Results We found that Cc5 inhibited thrombin generation and increased the prothrombin time and the activated partial thromboplastin time of human plasma via FX cleavage. A mutant that was unable to synthesize a type 7 dipeptidyl peptidase (DPP7) of the S46 serine protease family failed to proteolyse FX. The purified protease (CcDPP7) cleaved FX heavy and light chains from the N-terminus, and was active in vivo after intravenous injection. Conclusions This is, to our knowledge, the first study demonstrating a detailed mechanism for FX inactivation by a bacterial protease, and it is the first functional study associating DPP7 proteases with a potentially pathogenic outcome.

Details

Language :
English
ISSN :
15387836 and 15387933
Database :
OpenAIRE
Journal :
Journal of thrombosis and haemostasis : JTH
Accession number :
edsair.doi.dedup.....c68d3725cd91e675eb2cb4849cb92201
Full Text :
https://doi.org/10.1111/jth.13605