Back to Search
Start Over
Regulation of dopamine D3 receptors by protein-protein interactions
- Publication Year :
- 2010
- Publisher :
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 2010.
-
Abstract
- Galphai/o protein-coupled dopamine D3 receptors (D3Rs) are preferentially expressed in the limbic system, including the nucleus accumbens. This situates the receptor well in the regulation of limbic function and in the pathogenesis of various neuropsychiatric and neurodegenerative disorders. The intracellular domains of the receptor, mainly the large third intracellular loop and the intracellular C-terminal tail, interact with multiple submembranous proteins. These interactions are critical for the control of surface expression of the receptor and the efficacy of receptor signaling. Recently, a synapse-enriched protein kinase, Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), has been found to interact with D3R in the above mentioned interaction model. CaMKII directly binds to the N-terminal of the third loop of D3R. This binding is Ca(2+)-dependent and is sustained by the autophosphorylation of the kinase. In rat accumbal neurons, the increase in Ca(2+) level induces the recruitment of CaMKII to D3R, and CaMKII phosphorylates the receptor at a specific serine site. The CaMKII-induced phosphorylation could inhibit the receptor function and further regulate the behavioral response to the psychostimulant cocaine. These findings reveal a prototypic protein association model between a G protein-coupled receptor and CaMKII. Through the dynamic protein-protein interactions, the abundance, turnover cycle, and function of D3R can be regulated by multiple signals and enzymatic proteins.
- Subjects :
- Physiology
Biology
Models, Biological
Dopamine receptor D3
Ca2+/calmodulin-dependent protein kinase
Enzyme-linked receptor
Cyclic AMP
Limbic System
Animals
Humans
5-HT5A receptor
Protein Interaction Domains and Motifs
Phosphorylation
Protein kinase A
Receptor
General Neuroscience
Autophosphorylation
Receptors, Dopamine D3
General Medicine
Cell biology
Minireview
Signal transduction
Calcium-Calmodulin-Dependent Protein Kinase Type 2
Neuroscience
Protein Binding
Signal Transduction
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....c63f5f72ad7fc2a7e0641e7337620d67