Back to Search Start Over

A Mild Traumatic Brain Injury in Mice Produces Lasting Deficits in Brain Metabolism

Authors :
Teresa Macheda
Adam D. Bachstetter
Danielle N. Lyons
Hemendra J. Vekaria
Patrick G. Sullivan
David K. Powell
Ai-Ling Lin
Brian T. Gold
Vikas Bakshi
Source :
Journal of Neurotrauma
Publication Year :
2018
Publisher :
Mary Ann Liebert Inc, 2018.

Abstract

Metabolic uncoupling has been well-characterized during the first minutes-to-days after a traumatic brain injury (TBI), yet mitochondrial bioenergetics during the weeks-to-months after a brain injury is poorly defined, particularly after a mild TBI. We hypothesized that a closed head injury (CHI) would be associated with deficits in mitochondrial bioenergetics at one month after the injury. A significant decrease in state-III (adenosine triphosphate production) and state-V (complex-I) driven mitochondrial respiration was found at one month post-injury in adult C57Bl/6J mice. Isolation of synaptic mitochondria demonstrated that the deficit in state-III and state-V was primarily neuronal. Injured mice had a temporally consistent deficit in memory recall at one month post-injury. Using proton magnetic resonance spectroscopy (1H MRS) at 7-Tesla, we found significant decreases in phosphocreatine, N-Acetylaspartic acid, and total choline. We also found regional variations in cerebral blood flow, including both hypo- and hyperperfusion, as measured by a pseudocontinuous arterial spin labeling MR sequence. Our results highlight a chronic deficit in mitochondrial bioenergetics associated with a CHI that may lead toward a novel approach for neurorestoration after a mild TBI. MRS provides a potential biomarker for assessing the efficacy of candidate treatments targeted at improving mitochondrial bioenergetics.

Details

ISSN :
15579042 and 08977151
Volume :
35
Database :
OpenAIRE
Journal :
Journal of Neurotrauma
Accession number :
edsair.doi.dedup.....c623e0864142c9110b9012209656c154
Full Text :
https://doi.org/10.1089/neu.2018.5663