Back to Search
Start Over
Metallothionein 1 negatively regulates glucose-stimulated insulin secretion and is differentially expressed in conditions of beta cell compensation and failure in mice and humans
- Source :
- Diabetologia, Vol. 62, no. 12, p. 2273-2286 (2019)
- Publication Year :
- 2019
-
Abstract
- Aims/hypothesis: The mechanisms responsible for beta cell compensation in obesity and for beta cell failure in type 2 diabetes are poorly defined. The mRNA levels of several metallothionein (MT) genes are upregulated in islets from individuals with type 2 diabetes, but their role in beta cells is not clear. Here we examined: 1) the temporal changes of islet Mt1 and Mt2 gene expression in mouse models of beta cell compensation and failure; and 2) the role of Mt1 and Mt2 in beta cell function and glucose homeostasis in mice. Methods: Mt1 and Mt2 expression was assessed in islets from: (1) control lean (chow diet-fed) and diet-induced obese (high-fat diet-fed for 6 weeks) mice; (2) mouse models of prediabetes (6-week-old db/db mice) and diabetes (16-week-old db/db mice) and age-matched db/+ (control) mice; and (3) obese non-diabetic ob/ob mice (16-week-old) and age-matched ob/+ (control) mice. MT1E, MT1X and MT2A expression was assessed in islets from humans with and without type 2 diabetes. Mt1-Mt2 double-knockout (KO) mice, transgenic mice overexpressing Mt1 under the control of its natural promoter (Tg-Mt1) and corresponding control mice were also studied. In MIN6 cells, MT1 and MT2 were inhibited by small interfering RNAs. mRNA levels were assessed by real-time RT-PCR, plasma insulin and islet MT levels by ELISA, glucose tolerance by i.p. glucose tolerance tests and fasting 1 h refeeding tests, insulin tolerance by i.p. insulin tolerance tests, insulin secretion by RIA, cytosolic free Ca2+ concentration with Fura-2 leakage resistant (Fura-2 LR), cytosolic free Zn2+ concentration with Fluozin-3, and NAD(P)H by autofluorescence. Results: Mt1 and Mt2 mRNA levels were reduced in islets of murine models of beta cell compensation, whereas they were increased in diabetic db/db mice. In humans, MT1X mRNA levels were significantly upregulated in islets from individuals with type 2 diabetes in comparison with non-diabetic donors, while MT1E and MT2A mRNA levels were unchanged. Ex vivo, islet Mt1 and Mt2 mRNA and MT1 and MT2 protein levels were downregulated after culture with glucose at 10–30 mmol/l vs 2–5 mmol/l, in association with increased insulin secretion. In human islets, mRNA levels of MT1E, MT1X and MT2A were downregulated by stimulation with physiological and supraphysiological levels of glucose. In comparison with wild-type (WT) mice, Mt1-Mt2 double-KO mice displayed improved glucose tolerance in association with increased insulin levels and enhanced insulin release from isolated islets. In contrast, isolated islets from Tg-Mt1 mice displayed impaired glucose-stimulated insulin secretion (GSIS). In both Mt1-Mt2 double-KO and Tg-Mt1 models, the changes in GSIS occurred despite similar islet insulin content, rises in cytosolic free Ca2+ concentration and NAD(P)H levels, or intracellular Zn2+ concentration vs WT mice. In MIN6 cells, knockdown of MT1 but not MT2 potentiated GSIS, suggesting that Mt1 rather than Mt2 affects beta cell function. Conclusions/interpretation: These findings implicate Mt1 as a negative regulator of insulin secretion. The downregulation of Mt1 is associated with beta cell compensation in obesity, whereas increased Mt1 accompanies beta cell failure and type 2 diabetes.
- Subjects :
- 0301 basic medicine
Blood Glucose
medicine.medical_specialty
Endocrinology, Diabetes and Metabolism
medicine.medical_treatment
Gene Expression
030209 endocrinology & metabolism
Type 2 diabetes
Diet, High-Fat
Cell Line
Prediabetic State
03 medical and health sciences
Islets of Langerhans
Mice
0302 clinical medicine
Endocrinology
Downregulation and upregulation
Diabetes mellitus
Internal medicine
Insulin-Secreting Cells
Insulin Secretion
medicine
Internal Medicine
Glucose homeostasis
Animals
Humans
Insulin
Prediabetes
Obesity
Glucose tolerance test
medicine.diagnostic_test
Chemistry
Phenyl Ethers
Glucose Tolerance Test
medicine.disease
Diabetes and Metabolism
030104 developmental biology
Glucose
Acrylates
Diabetes Mellitus, Type 2
Female
Metallothionein
Beta cell
Subjects
Details
- ISSN :
- 14320428
- Volume :
- 62
- Issue :
- 12
- Database :
- OpenAIRE
- Journal :
- Diabetologia
- Accession number :
- edsair.doi.dedup.....c5cbbf94b3e4eaf71ce8a572b9dd27af