Back to Search Start Over

Structural Insights into the Conformation and Oligomerization of E2~Ubiquitin Conjugates

Authors :
Joseph Amick
Jonathan N. Pruneda
Saurav Misra
Rachel E. Klevit
Richard C. Page
Publication Year :
2012

Abstract

Post-translational modification of proteins by ubiquitin (Ub) regulates a host of cellular processes including protein quality control, DNA repair, endocytosis and cellular signaling. In the ubiquitination cascade, a thioester-linked conjugate between the Ub C-terminus and the active site cysteine of a ubiquitin-conjugating enzyme (E2) is formed. The E2~Ub conjugate interacts with a ubiquitin ligase (E3) to transfer Ub to a lysine residue on a target protein. The flexibly-linked E2~Ub conjugates have been shown to form a range of structures in solution. In addition, select E2~Ub conjugates oligomerize through a noncovalent “backside” interaction between Ub and E2 components of different conjugates. Additional studies are needed to bridge the gap between the dynamic monomeric conjugates, E2~Ub oligomers and the mechanisms of ubiquitination. We present a new 2.35 Å crystal structure of an oligomeric UbcH5c~Ub conjugate. The conjugate forms a staggered linear oligomer that differs substantially from the “infinite spiral” helical arrangement of the sole previously reported structure of an oligomeric conjugate. Our structure also differs in intra-conjugate conformation from other structurally characterized conjugates. Despite these differences, we find that the backside interaction mode is conserved in different conjugate oligomers and is independent of intra-conjugate relative E2/Ub orientations. We delineate a common intra-conjugate E2-binding surface on Ub. In addition, we demonstrate that an E3 ligase CHIP (carboxyl terminus of Hsp70 interacting protein) interacts directly with UbcH5c~Ub oligomers, not only with conjugate monomers. These results provide insights into the conformational diversity of E2~Ub conjugates and conjugate oligomers, and into their compatibility and interactions with E3 ligases, which have important consequences for the ubiquitination process.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....c5c59a211c113c7c6dd2003584c5d382