Back to Search Start Over

Critical Role of Cytosolic DNA and Its Sensing Adaptor STING in Aortic Degeneration, Dissection, and Rupture

Authors :
Ying H. Shen
Lin Zhang
Zbigniew Starosolski
Wei Luo
Yidan Wang
Alon Azares
Yumei Li
Pingping Ren
Joseph S. Coselli
Michelle Zhang
Scott A. LeMaire
Rui Chen
Jun Ichi Abe
Keigi Fujiwara
Jiao Guo
Cristian Coarfa
Kimal Rajapakshe
Ketan B. Ghaghada
Chen Zhang
Dianna M. Milewicz
Yanming Li
Source :
Circulation
Publication Year :
2020
Publisher :
Ovid Technologies (Wolters Kluwer Health), 2020.

Abstract

Background: Sporadic aortic aneurysm and dissection (AAD), caused by progressive aortic smooth muscle cell (SMC) loss and extracellular matrix degradation, is a highly lethal condition. Identifying mechanisms that drive aortic degeneration is a crucial step in developing an effective pharmacologic treatment to prevent disease progression. Recent evidence has indicated that cytosolic DNA and abnormal activation of the cytosolic DNA sensing adaptor STING (stimulator of interferon genes) play a critical role in vascular inflammation and destruction. Here, we examined the involvement of this mechanism in aortic degeneration and sporadic AAD formation. Methods: The presence of cytosolic DNA in aortic cells and activation of the STING pathway were examined in aortic tissues from patients with sporadic ascending thoracic AAD. The role of STING in AAD development was evaluated in Sting -deficient ( Sting gt/gt ) mice in a sporadic AAD model induced by challenging mice with a combination of a high-fat diet and angiotensin II. We also examined the direct effects of STING on SMC death and macrophage activation in vitro. Results: In human sporadic AAD tissues, we observed the presence of cytosolic DNA in SMCs and macrophages and significant activation of the STING pathway. In the sporadic AAD model, Sting gt/gt mice showed significant reductions in challenge-induced aortic enlargement, dissection, and rupture in both the thoracic and abdominal aortic regions. Single-cell transcriptome analysis revealed that aortic challenge in wild-type mice induced the DNA damage response, the inflammatory response, dedifferentiation and cell death in SMCs, and matrix metalloproteinase expression in macrophages. These changes were attenuated in challenged Sting gt/gt mice. Mechanistically, nuclear and mitochondrial DNA damage in SMCs and the subsequent leak of DNA to the cytosol activated STING signaling, which induced cell death through apoptosis and necroptosis. In addition, DNA from damaged SMCs was engulfed by macrophages in which it activated STING and its target interferon regulatory factor 3, which directly induced matrix metalloproteinase-9 expression. We also found that pharmacologically inhibiting STING activation partially prevented AAD development. Conclusions: Our findings indicate that the presence of cytosolic DNA and subsequent activation of cytosolic DNA sensing adaptor STING signaling represent a key mechanism in aortic degeneration and that targeting STING may prevent sporadic AAD development.

Details

ISSN :
15244539 and 00097322
Volume :
141
Database :
OpenAIRE
Journal :
Circulation
Accession number :
edsair.doi.dedup.....c5b553699d5d116d43c7d10a3d358b83