Back to Search
Start Over
Modeling and control of a parallel waste heat recovery system for Euro-VI heavy-duty diesel engines
- Source :
- Energies, 10, 7, 6571-6592, Energies, Volume 7, Issue 10, Pages 6571-6592, Energies, Vol 7, Iss 10, Pp 6571-6592 (2014), Energies, 7(10), 6571-6592. Multidisciplinary Digital Publishing Institute (MDPI)
- Publication Year :
- 2014
-
Abstract
- This paper presents the modeling and control of a waste heat recovery system for a Euro-VI heavy-duty truck engine. The considered waste heat recovery system consists of two parallel evaporators with expander and pumps mechanically coupled to the engine crankshaft. Compared to previous work, the waste heat recovery system modeling is improved by including evaporator models that combine the finite difference modeling approach with a moving boundary one. Over a specific cycle, the steady-state and dynamic temperature prediction accuracy improved on average by 2% and 7%. From a control design perspective, the objective is to maximize the waste heat recovery system output power. However, for safe system operation, the vapor state needs to be maintained before the expander under highly dynamic engine disturbances. To achieve this, a switching model predictive control strategy is developed. The proposed control strategy performance is demonstrated using the high-fidelity waste heat recovery system model subject to measured disturbances from an Euro-VI heavy-duty diesel engine. Simulations are performed using a cold-start World Harmonized Transient cycle that covers typical urban, rural and highway driving conditions. The model predictive control strategy provides 15% more time in vapor and recovered thermal energy than a classical proportional-integral (PI) control strategy. In the case that the model is accurately known, the proposed control strategy performance can be improved by 10% in terms of time in vapor and recovered thermal energy. This is demonstrated with an offline nonlinear model predictive control strategy.
- Subjects :
- Diesel engine
Thermal efficiency
Rankine cycle
Engineering
Control and Optimization
Energy Engineering and Power Technology
Mechanical engineering
lcsh:Technology
Automotive engineering
Waste heat recovery unit
law.invention
jel:Q40
law
jel:Q
jel:Q43
Heat exchanger
jel:Q42
Control
jel:Q41
jel:Q48
jel:Q47
Electrical and Electronic Engineering
Engineering (miscellaneous)
Waste heat recovery
Evaporator
jel:Q49
Mobility
TS - Technical Sciences
Energy
lcsh:T
Renewable Energy, Sustainability and the Environment
business.industry
Fluid Mechanics Chemistry & Energetics
jel:Q0
waste heat recovery
heat exchanger
diesel engine
heavy-duty
control
jel:Q4
SDG 11 – Duurzame steden en gemeenschappen
SDG 11 - Sustainable Cities and Communities
Model predictive control
PT - Power Trains
business
Heavy-duty
Thermal energy
Energy (miscellaneous)
Subjects
Details
- Language :
- English
- ISSN :
- 19961073
- Volume :
- 7
- Issue :
- 10
- Database :
- OpenAIRE
- Journal :
- Energies
- Accession number :
- edsair.doi.dedup.....c5aba763192fcaff07153d1c07e8352b
- Full Text :
- https://doi.org/10.3390/en7106571