Back to Search
Start Over
Machine Learning Prediction of Foodborne Disease Pathogens: Algorithm Development and Validation Study
- Source :
- JMIR Medical Informatics, JMIR Medical Informatics, Vol 9, Iss 1, p e24924 (2021)
- Publication Year :
- 2021
- Publisher :
- JMIR Publications Inc., 2021.
-
Abstract
- Background Foodborne diseases, as a type of disease with a high global incidence, place a heavy burden on public health and social economy. Foodborne pathogens, as the main factor of foodborne diseases, play an important role in the treatment and prevention of foodborne diseases; however, foodborne diseases caused by different pathogens lack specificity in clinical features, and there is a low proportion of clinically actual pathogen detection in real life. Objective We aimed to analyze foodborne disease case data, select appropriate features based on analysis results, and use machine learning methods to classify foodborne disease pathogens to predict foodborne disease pathogens that have not been tested. Methods We extracted features such as space, time, and exposed food from foodborne disease case data and analyzed the relationship between these features and the foodborne disease pathogens using a variety of machine learning methods to classify foodborne disease pathogens. We compared the results of 4 models to obtain the pathogen prediction model with the highest accuracy. Results The gradient boost decision tree model obtained the highest accuracy, with accuracy approaching 69% in identifying 4 pathogens including Salmonella, Norovirus, Escherichia coli, and Vibrio parahaemolyticus. By evaluating the importance of features such as time of illness, geographical longitude and latitude, and diarrhea frequency, we found that they play important roles in classifying the foodborne disease pathogens. Conclusions Data analysis can reflect the distribution of some features of foodborne diseases and the relationship among the features. The classification of pathogens based on the analysis results and machine learning methods can provide beneficial support for clinical auxiliary diagnosis and treatment of foodborne diseases.
- Subjects :
- Validation study
Pathogen detection
Computer applications to medicine. Medical informatics
Diarrhea Frequency
R858-859.7
Health Informatics
Disease
Biology
Machine learning
computer.software_genre
medicine.disease_cause
pathogens prediction
03 medical and health sciences
0302 clinical medicine
Health Information Management
medicine
In real life
030212 general & internal medicine
Pathogen
Original Paper
0303 health sciences
030306 microbiology
business.industry
foodborne disease
machine learning
Norovirus
Artificial intelligence
business
computer
Subjects
Details
- ISSN :
- 22919694
- Volume :
- 9
- Database :
- OpenAIRE
- Journal :
- JMIR Medical Informatics
- Accession number :
- edsair.doi.dedup.....c587d8b2c0a847a92626be7d5d76a79d