Back to Search
Start Over
Towards a reproducible protocol for repetitive and semi-quantitative rat brain imaging with (18) F-FDG: exemplified in a memantine pharmacological challenge
- Source :
- Neuroimage
- Publication Year :
- 2014
-
Abstract
- The standard uptake value (SUV), commonly used to quantify F-18-FluoroDeoxyGlucose (FDG) uptake in small animal brain PET imaging, is affected by many factors. In this study the influence of fasting times, inter-scan duration and repetitive scanning on the variability of different Shy measures is investigated. Additionally it is demonstrated that these variables could adversely influence the outcome of a pharmacological challenge when not accounted for. Naive Sprague-Dawley rats (n = 20) were randomly divided into five different fasting groups (no fasting up to 24 h of fasting). SUV brain uptake values were reproducible in naive animals when a fasting period of at least 12 h is used and for shorter fasting periods SUV values need to be corrected for the glucose level. Additionally, a separate animal group (n = 6) was sufficiently fasted for 16 h and in a longitudinal setting being scanned six times in three weeks. Especially with short inter-scan durations, increasing glucose levels were found over time which was attributed to increased stress due to repeated food deprivation, altered food intake or scan manipulations. As a result, even with controlled and sufficient fasting, blood glucose levels should be taken into account for data quantification. Strikingly, even the brain activation effects of an NMDA-antagonist challenge with memantine could not be detected in experiments with a short inter-scan duration if glucose levels were not taken into account. Correcting for glucose levels decreases the inter- and intra-animal variability for rat brain imaging. SUV corrected for glucose levels yields the lowest inter-animal variation. However, if the body weight changes significantly, as in a long experiment, quantification based on the glucose corrected percentage injected dose (and not SUV) is recommendable as this yields the lowest intra-animal variation. (C) 2014 Elsevier Inc. All rights reserved.
- Subjects :
- Brain activation
Male
Food intake
medicine.medical_specialty
Metabolic Clearance Rate
Cognitive Neuroscience
Standardized uptake value
Models, Biological
Sensitivity and Specificity
Rats, Sprague-Dawley
Fluorodeoxyglucose F18
Memantine
Internal medicine
medicine
Animals
Computer Simulation
Pharmacological challenge
Brain uptake
Computer. Automation
business.industry
Brain
Reproducibility of Results
Fasting
Rat brain
Image Enhancement
Rats
Endocrinology
Neurology
Positron-Emission Tomography
Human medicine
Radiopharmaceuticals
business
Semi quantitative
medicine.drug
Subjects
Details
- ISSN :
- 10959572 and 10538119
- Volume :
- 96
- Database :
- OpenAIRE
- Journal :
- NeuroImage
- Accession number :
- edsair.doi.dedup.....c5676c6da9ff511c262e6570dfdf085e