Back to Search
Start Over
On the energy growth of some periodically driven quantum systems with shrinking gaps in the spectrum
- Source :
- Journal of Statistical Physics, Journal of Statistical Physics, Springer Verlag, 2008, pp.169-193, Journal of Statistical Physics, 2008, 130, pp.169-193
- Publication Year :
- 2008
- Publisher :
- HAL CCSD, 2008.
-
Abstract
- 27 pages; We consider quantum Hamiltonians of the form H(t)=H+V(t) where the spectrum of H is semibounded and discrete, and the eigenvalues behave as E_n~n^\alpha, with 00, p>=1 and \gamma=(1-\alpha)/2. We show that the energy diffusion exponent can be arbitrarily small provided p is sufficiently large and \epsilon is small enough. More precisely, for any initial condition \Psi\in Dom(H^{1/2}), the diffusion of energy is bounded from above as _\Psi(t)=O(t^\sigma) where \sigma=\alpha/(2\ceil{p-1}\gamma-1/2). As an application we consider the Hamiltonian H(t)=|p|^\alpha+\epsilon*v(\theta,t) on L^2(S^1,d\theta) which was discussed earlier in the literature by Howland.
- Subjects :
- diffusion coeffcients
[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]
FOS: Physical sciences
01 natural sciences
symbols.namesake
[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]
0103 physical sciences
Initial value problem
Quantum evolution
0101 mathematics
[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]
Quantum
Mathematical Physics
Eigenvalues and eigenvectors
47N50,81Q10
Mathematical physics
Physics
010102 general mathematics
Sigma
Statistical and Nonlinear Physics
Mathematical Physics (math-ph)
[PHYS.MPHY] Physics [physics]/Mathematical Physics [math-ph]
Schrinking spectral gaps
Bounded function
symbols
Exponent
010307 mathematical physics
Hamiltonian (quantum mechanics)
Subjects
Details
- Language :
- English
- ISSN :
- 00224715 and 15729613
- Database :
- OpenAIRE
- Journal :
- Journal of Statistical Physics, Journal of Statistical Physics, Springer Verlag, 2008, pp.169-193, Journal of Statistical Physics, 2008, 130, pp.169-193
- Accession number :
- edsair.doi.dedup.....c5648ae4535ef9e1ae934460ba5adbb7