Back to Search Start Over

Cramér-Rao Bounds for SNR Estimation of Oversampled Linearly Modulated Signals

Authors :
Javier Villares
Wilfried Gappmair
Roberto Lopez-Valcarce
Carlos Mosquera
Jaume Riba
Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions
Universitat Politècnica de Catalunya. SPCOM - Grup de Recerca de Processament del Senyal i Comunicacions
Source :
UPCommons. Portal del coneixement obert de la UPC, Universitat Politècnica de Catalunya (UPC)
Publication Year :
2015
Publisher :
Institute of Electrical and Electronics Engineers (IEEE), 2015.

Abstract

© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. Most signal-to-noise ratio (SNR) estimators use the receiver matched filter output sampled at the symbol rate, an approach which does not preserve all information in the analog waveform due to aliasing. Thus, it is relevant to ask whether avoiding aliasing could improve SNR estimation. To this end, we compute the corresponding data-aided (DA) and non-data-aided (NDA) Cramer-Rao bounds (CRBs). We adopt a novel dual filter framework, which is shown to be information-preserving under suitable conditions and considerably simplifies the analysis. It is shown that the CRB can be substantially reduced by exploiting any available excess bandwidth, depending on the modulation scheme, the SNR range, and the estimator type (DA or NDA).

Details

ISSN :
19410476 and 1053587X
Volume :
63
Database :
OpenAIRE
Journal :
IEEE Transactions on Signal Processing
Accession number :
edsair.doi.dedup.....c5523ed27e33d13b6c35ad169b2a7b4c