Back to Search Start Over

Mapping Computations in Heterogeneous Multicore Systems with Statistical Regression on Program Inputs

Authors :
Junio Cezar Ribeiro da Silva
Abdoulaye Gamatié
Vinicius Petrucci
Fernando Magno Quintão Pereira
Lorena Leão
Federal University of Minas Gerais (UFMG)
Universidade Federal da Bahia (UFBA)
University of Pittsburgh (PITT)
Pennsylvania Commonwealth System of Higher Education (PCSHE)
ADAptive Computing (ADAC)
Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM)
Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)
Source :
ACM Transactions on Embedded Computing Systems (TECS), ACM Transactions on Embedded Computing Systems (TECS), ACM, In press
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

International audience; A hardware configuration is a set of processors and their frequency levels in a multi-core heterogeneous system. This paper presents a compiler-based technique to match functions with hardware configurations. Such a technique consists in using multivariate linear regression to associate function arguments with particular hardware configurations. By showing that this classification space tends to be convex in practice, this paper demonstrates that linear regression is not only an efficient tool to map computations to heterogeneous hardware, but also an effective one. To demonstrate the viability of multivariate linear regression as a way to perform adaptive compilation for heterogeneous architectures, we have implemented our ideas onto the Soot Java bytecode analyzer. Code that we produce can predict the best configuration for a large class of Java and Scala benchmarks running on an Odroid XU4 big.LITTLE board; hence, outperforming prior techniques such as ARM’s GTS and CHOAMP, a recently released static program scheduler.

Details

Language :
English
ISSN :
15399087 and 15583465
Database :
OpenAIRE
Journal :
ACM Transactions on Embedded Computing Systems (TECS), ACM Transactions on Embedded Computing Systems (TECS), ACM, In press
Accession number :
edsair.doi.dedup.....c537b50c53227f54a093ab4ee14465f8