Back to Search Start Over

A maximum caliber approach for continuum path ensembles

Authors :
Bolhuis, Peter G.
Brotzakis, Z. Faidon
Vendruscolo, Michele
Simulation of Biomolecular Systems (HIMS, FNWI)
Bolhuis, Peter G. [0000-0002-3698-9258]
Brotzakis, Z. Faidon [0000-0001-7024-1430]
Vendruscolo, Michele [0000-0002-3616-1610]
Apollo - University of Cambridge Repository
Bolhuis, PG [0000-0002-3698-9258]
Brotzakis, ZF [0000-0001-7024-1430]
Vendruscolo, M [0000-0002-3616-1610]
Source :
The European Physical Journal B. Condensed Matter Physics, 94(9):188. Springer New York
Publication Year :
2021

Abstract

Funder: Federation of European Biochemical Societies; doi: http://dx.doi.org/10.13039/100012623<br />The maximum caliber approach implements the maximum entropy principle for trajectories by maximizing a path entropy under external constraints. The maximum caliber approach can be applied to a diverse set of equilibrium and non-equilibrium problems concerning the properties of trajectories connecting different states of a system. In this review, we recapitulate the basic concepts of the maximum entropy principle and of its maximum caliber implementation for path ensembles, and review recent applications of this approach. In particular, we describe how we recently used this approach to introduce a framework, called here the continuum path ensemble maximum caliber (CoPE-MaxCal) method, to impose kinetic constraints in molecular simulations, for instance to include experimental information about transition rates. Such incorporation of dynamical information can ameliorate inaccuracies of empirical force fields, and lead to improved mechanistic insights. We conclude by offering an outlook for future research. Graphic Abstract

Details

Language :
English
ISSN :
14346028
Database :
OpenAIRE
Journal :
The European Physical Journal B. Condensed Matter Physics, 94(9):188. Springer New York
Accession number :
edsair.doi.dedup.....c509b374f6217362a78bf939156d0c15