Back to Search Start Over

A Novel Regulator of Macrophage Activation

Authors :
Patali S. Cheruku
Honggui Li
Xin Guo
Lei Shi
Stephen Safe
Cong Meng
Beiyan Zhou
Guoqing Zhuang
Hang Xu
Ashley R. Evans
Chaodong Wu
Gang Wang
Source :
Circulation. 125:2892-2903
Publication Year :
2012
Publisher :
Ovid Technologies (Wolters Kluwer Health), 2012.

Abstract

Background— Macrophage activation plays a crucial role in regulating adipose tissue inflammation and is a major contributor to the pathogenesis of obesity-associated cardiovascular diseases. On various types of stimuli, macrophages respond with either classic (M1) or alternative (M2) activation. M1- and M2-mediated signaling pathways and corresponding cytokine production profiles are not completely understood. The discovery of microRNAs provides a new opportunity to understand this complicated but crucial network for macrophage activation and adipose tissue function. Methods and Results— We have examined the activity of microRNA-223 (miR-223) and its role in controlling macrophage functions in adipose tissue inflammation and systemic insulin resistance. miR-223 −/− mice on a high-fat diet exhibited an increased severity of systemic insulin resistance compared with wild-type mice that was accompanied by a marked increase in adipose tissue inflammation. The specific regulatory effects of miR-223 in myeloid cell–mediated regulation of adipose tissue inflammation and insulin resistance were then confirmed by transplantation analysis. Moreover, using bone marrow–derived macrophages, we demonstrated that miR-223 is a novel regulator of macrophage polarization, which suppresses classic proinflammatory pathways and enhances the alternative antiinflammatory responses. In addition, we identified Pknox1 as a genuine miR-223 target gene and an essential regulator for macrophage polarization. Conclusion— For the first time, this study demonstrates that miR-223 acts to inhibit Pknox1, suppressing proinflammatory activation of macrophages; thus, it is a crucial regulator of macrophage polarization and protects against diet-induced adipose tissue inflammatory response and systemic insulin resistance.

Details

ISSN :
15244539 and 00097322
Volume :
125
Database :
OpenAIRE
Journal :
Circulation
Accession number :
edsair.doi.dedup.....c4ece4f0c3d927e1347151c9b6b1120c