Back to Search Start Over

Reduced mitochondrial respiration in the ischemic as well as in the remote nonischemic region in postmyocardial infarction remodeling

Authors :
Eef Dries
Joëlle Abi-Char
Renée Ventura-Clapier
Ronald B. Driesen
Piet Claus
Kristel Vermeulen
Karin R. Sipido
Chandan K. Nagaraju
Virginie Bito
Diogo T. Galan
Patricia Holemans
Source :
American journal of physiology. Heart and circulatory physiology. 311(5)
Publication Year :
2015

Abstract

Scarring and remodeling of the left ventricle (LV) after myocardial infarction (MI) results in ischemic cardiomyopathy with reduced contractile function. Regional differences related to persisting ischemia may exist. We investigated the hypothesis that mitochondrial function and structure is altered in the myocardium adjacent to MI with reduced perfusion (MIadjacent) and less so in the remote, nonischemic myocardium (MIremote). We used a pig model of chronic coronary stenosis and MI ( n = 13). Functional and perfusion MR imaging 6 wk after intervention showed reduced ejection fraction and increased global wall stress compared with sham-operated animals (Sham; n = 14). Regional strain in MIadjacent was reduced with reduced contractile reserve; in MIremote strain was also reduced but responsive to dobutamine and perfusion was normal compared with Sham. Capillary density was unchanged. Cardiac myocytes isolated from both regions had reduced basal and maximal oxygen consumption rate, as well as through complex I and II, but complex IV activity was unchanged. Reduced respiration was not associated with detectable reduction of mitochondrial density. There was no significant change in AMPK or glucose transporter expression levels, but glycogen content was significantly increased in both MIadjacent and MIremote. Glycogen accumulation was predominantly perinuclear; mitochondria in this area were smaller but only in MIadjacent where also subsarcolemmal mitochondria were smaller. In conclusion, after MI reduction of mitochondrial respiration and glycogen accumulation occur in all LV regions suggesting that reduced perfusion does not lead to additional specific changes and that increased hemodynamic load is the major driver for changes in mitochondrial function.

Details

ISSN :
15221539
Volume :
311
Issue :
5
Database :
OpenAIRE
Journal :
American journal of physiology. Heart and circulatory physiology
Accession number :
edsair.doi.dedup.....c4eca67b0f356d628756c9ec79308a78