Back to Search Start Over

Tightness and duality of martingale transport on the Skorokhod space

Authors :
Nizar Touzi
Gaoyue Guo
Xiaolu Tan
The Institute of Automation of the Chinese Academy of Sciences (CASIA)
Chinese Academy of Sciences [Beijing] (CAS)
CEntre de REcherches en MAthématiques de la DEcision (CEREMADE)
Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
Centre de Mathématiques Appliquées - Ecole Polytechnique (CMAP)
École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)
Source :
Stochastic Processes and their Applications, Stochastic Processes and their Applications, Elsevier, 2017
Publication Year :
2017
Publisher :
Elsevier BV, 2017.

Abstract

International audience; The martingale optimal transport aims to optimally transfer a probability measure to another along the class of martingales. This problem is mainly motivated by the robust superhedging of exotic derivatives in financial mathematics, which turns out to be the corresponding Kantorovich dual. In this paper we consider the continuous-time martingale transport on the Skorokhod space of c`adì ag paths. Similar to the classical setting of optimal transport, we introduce different dual problems and establish the corresponding dualities by a crucial use of the S−topology and the dynamic programming principle 1 .

Details

ISSN :
03044149
Volume :
127
Database :
OpenAIRE
Journal :
Stochastic Processes and their Applications
Accession number :
edsair.doi.dedup.....c4e958ff3e54a2a47f0c10eec59b5a8f