Back to Search Start Over

Identification, Molecular Characteristic, and Expression Analysis of PIFs Related to Chlorophyll Metabolism in Tea Plant (Camellia sinensis)

Authors :
Zhonghua Liu
Xiangna Zhang
Li-Gui Xiong
Jianan Huang
Kunbo Wang
Beibei Wen
Juan Li
Yong Luo
Source :
International Journal of Molecular Sciences, Vol 22, Iss 10949, p 10949 (2021), International Journal of Molecular Sciences, Volume 22, Issue 20
Publication Year :
2021
Publisher :
MDPI AG, 2021.

Abstract

The phytochrome-interacting factors (PIFs) proteins belong to the subfamily of basic helix–loop–helix (bHLH) transcription factors and play important roles in chloroplast development and chlorophyll biosynthesis. Currently, knowledge about the PIF gene family in Camellia sinensis remains very limited. In this study, seven PIF members were identified in the C. sinensis genome and named based on homology with AtPIF genes in Arabidopsis thaliana. All C. sinensis PIF (CsPIF) proteins have both the conserved active PHYB binding (APB) and bHLH domains. Phylogenetic analysis revealed that CsPIFs were clustered into four groups—PIF1, PIF3, PIF7, and PIF8—and most CsPIFs were clustered in pairs with their corresponding orthologs in Populus tremula. CsPIF members in the same group tended to display uniform or similar exon–intron distribution patterns and motif compositions. CsPIF genes were differentially expressed in C. sinensis with various leaf colors and strongly correlated with the expression of genes involved in the chlorophyll metabolism pathway. Promoter analysis of structural genes related to chlorophyll metabolism found DNA-binding sites of PIFs were abundant in the promoter regions. Protein–protein interaction networks of CsPIFs demonstrated a close association with phytochrome, PIF4, HY5, TOC1, COP1, and PTAC12 proteins. Additionally, subcellular localization and transcriptional activity analysis suggested that CsPIF3b was nuclear localized protein and possessed transcriptional activity. We also found that CsPIF3b could activate the transcription of CsHEMA and CsPOR in Nicotiana benthamiana leaves. This work provides comprehensive research of CsPIFs and would be helpful to further promote the regulation mechanism of PIF on chlorophyll metabolism in C. sinensis.

Details

Language :
English
ISSN :
16616596 and 14220067
Volume :
22
Issue :
10949
Database :
OpenAIRE
Journal :
International Journal of Molecular Sciences
Accession number :
edsair.doi.dedup.....c4d4fda5668997b885335b65e7140663