Back to Search
Start Over
Twisted toroidal Lie algebras and Moody-Rao-Yokonuma presentation
- Source :
- Science China Mathematics. 64:1181-1200
- Publication Year :
- 2020
- Publisher :
- Springer Science and Business Media LLC, 2020.
-
Abstract
- Let $\fg$ be an affine Kac-Moody algebra, and $\mu$ a diagram automorphism of $\fg$. In this paper, we give an explicit realization for the universal central extension $\wh\fg[\mu]$ of the twisted loop algebra of $\fg$ related to $\mu$, which provides a Moody-Rao-Yokonuma presentation for the algebra $\wh\fg[\mu]$ when $\mu$ is non-transitive, and the presentation is indeed related to the quantization of toroidal Lie algebras.
- Subjects :
- Pure mathematics
Loop algebra
Toroid
General Mathematics
010102 general mathematics
Mathematics - Rings and Algebras
Extension (predicate logic)
Automorphism
01 natural sciences
High Energy Physics::Theory
Quantization (physics)
Rings and Algebras (math.RA)
Mathematics::Quantum Algebra
0103 physical sciences
Lie algebra
FOS: Mathematics
010307 mathematical physics
Affine transformation
Representation Theory (math.RT)
0101 mathematics
Mathematics::Representation Theory
Realization (systems)
Mathematics - Representation Theory
Mathematics
Subjects
Details
- ISSN :
- 18691862 and 16747283
- Volume :
- 64
- Database :
- OpenAIRE
- Journal :
- Science China Mathematics
- Accession number :
- edsair.doi.dedup.....c4cdf446dbb94bad3f63f163cb406196
- Full Text :
- https://doi.org/10.1007/s11425-019-1615-x