Back to Search
Start Over
Brain-computer interface in paralysis
- Source :
- Current opinion in neurology. 21(6)
- Publication Year :
- 2008
-
Abstract
- Communication with patients suffering from locked-in syndrome and other forms of paralysis is an unsolved challenge. Movement restoration for patients with chronic stroke or other brain damage also remains a therapeutic problem and available treatments do not offer significant improvements. This review considers recent research in brain-computer interfaces (BCIs) as promising solutions to these challenges.Experimentation with nonhuman primates suggests that intentional goal directed movements of the upper limbs can be reconstructed and transmitted to external manipulandum or robotic devices controlled from a relatively small number of microelectrodes implanted into movement-relevant brain areas after some training, opening the door for the development of BCI or brain-machine interfaces in humans. Although noninvasive BCIs using electroencephalographic recordings or event-related-brain-potentials in healthy individuals and patients with amyotrophic lateral sclerosis or stroke can transmit up to 80 bits/min of information, the use of BCIs - invasive or noninvasive - in severely or totally paralyzed patients has met some unforeseen difficulties.Invasive and noninvasive BCIs using recordings from nerve cells, large neuronal pools such as electrocorticogram and electroencephalography, or blood flow based measures such as functional magnetic resonance imaging and near-infrared spectroscopy show potential for communication in locked-in syndrome and movement restoration in chronic stroke, but controlled phase III clinical trials with larger populations of severely disturbed patients are urgently needed.
- Subjects :
- medicine.medical_specialty
Extramural
Brain
Brain damage
medicine.disease
Communication Aids for Disabled
User-Computer Interface
Physical medicine and rehabilitation
Neurology
Paralysis
medicine
Humans
Neurology (clinical)
medicine.symptom
Amyotrophic lateral sclerosis
Psychology
Stroke
Chronic stroke
Brain–computer interface
Subjects
Details
- ISSN :
- 13507540
- Volume :
- 21
- Issue :
- 6
- Database :
- OpenAIRE
- Journal :
- Current opinion in neurology
- Accession number :
- edsair.doi.dedup.....c4b6bf8ee5742c4ca09a928e47e0c433