Back to Search Start Over

Structural characterization of SnO nanoparticles synthesized by the hydrothermal and microwave routes

Authors :
Rebeca Bacani
J. S. Dias
Eduardo Rezende Triboni
Fabio R.M. Batista
Source :
Scientific Reports, Scientific Reports, Vol 10, Iss 1, Pp 1-11 (2020)
Publication Year :
2020
Publisher :
Springer Science and Business Media LLC, 2020.

Abstract

SnO particles were synthesized by an alkali-assisted hydrothermal and microwave methods. The aqueous-based reactions were carried out at pH ~ 8, under inert atmosphere (Ar). The reactions were taken under different times, and a full XRD structural analysis was made to evaluate the conversion from the Sn6O4(OH)4 intermediate to SnO particles. Williamson-Hall analysis showed that the size and strain of the SnO particles were time and route treatment dependent. Microwave heating yielded a single tetragonal SnO phase after 1 h of thermal treatment, and TEM images revealed spherical-shaped SnO nanoparticles with an average size of 9(1) nm. While by the hydrothermal treatment single SnO phase was obtained only after 4 hours, yielding non-uniform and elongated particles with sub-micrometric size. A dissolution-recrystallization process was taken into account as the mechanism for SnO particles formation, in which hydroxylated complexes, Sn2(OH)6−2, then condense to form the oxide. The time-shorting reaction provided by the microwave-assisted synthesis may be attributed to better heat distribution.

Details

ISSN :
20452322
Volume :
10
Database :
OpenAIRE
Journal :
Scientific Reports
Accession number :
edsair.doi.dedup.....c4ac9a6eb3a79e640047e173e29ac7c4
Full Text :
https://doi.org/10.1038/s41598-020-66043-4