Back to Search Start Over

Non-invasive multiparametric approach to determine sweat-blood lactate bioequivalence

Authors :
Genis Rabost-Garcia
Valeria Colmena
Javier Aguilar-Torán
Joan Vieyra Galí
Jaime Punter-Villagrasa
Jasmina Casals-Terré
Pere Miribel-Catala
Xavier Muñoz
Joan Cadefau
Josep Padullés
Daniel Brotons Cuixart
Universitat Politècnica de Catalunya. Doctorat en Enginyeria Mecànica, Fluids i Aeronàutica
Universitat Politècnica de Catalunya. Departament d'Enginyeria Mecànica
Universitat Politècnica de Catalunya. CATMech - Centre Avançat de Tecnologies Mecàniques
Publication Year :
2023

Abstract

Many sweat-based wearable monitoring systems have been recently proposed, but the data provided by those systems often lack a reliable and meaningful relation to standardized blood values. One clear example is lactate, a relevant biomarker for both sports and health sectors, with a complex sweat–blood bioequivalence. This limitation decreases its individual significance as a sweat-based biomarker. Taking into account the insights of previous studies, a multiparametric methodology has been proposed to predict blood lactate from non-invasive independent sensors: sweat lactate, sweat rate, and heart rate. The bioequivalence study was performed with a large set of volunteers (>30 subjects) in collaboration with sports institutions (Institut Nacional d’Educació Física de Catalunya, INEFC, and Centre d’Alt Rendiment, CAR, located in Spain). A neural network algorithm was used to predict blood lactate values from the sensor data and subject metadata. The developed methodology reliably and accurately predicted blood lactate absolute values, only adding 0.3 mM of accumulated error when compared to portable blood lactate meters, the current gold standard for sports clinicians. The approach proposed in this work, along with an integrated platform for sweat monitoring, will have a strong impact on the sports and health fields as an autonomous, real-time, and continuous monitoring tool The authors kindly acknowledge the support from the Spanish Ministerio de Indústria, Energía y Turismo (AEI Clusters Program, AEI2009L1CA011), Ministerio de Ciencia y Innovació n (PID2020-114070RB-I00), Agencia Estatal de Investigación (RED2018-102829-T and CPP2021-009021), and AGAUR (2019 DI 18 and 2021PROD00064)

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....c4ac1a601c5ed2ece0c3870d69e661c3