Back to Search
Start Over
DispHred : a server to predict pH-dependent order-disorder transitions in intrinsically disordered proteins
- Source :
- Dipòsit Digital de Documents de la UAB, Universitat Autònoma de Barcelona, Recercat. Dipósit de la Recerca de Catalunya, instname, International Journal of Molecular Sciences, Vol 21, Iss 5814, p 5814 (2020), Recercat: Dipósit de la Recerca de Catalunya, Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya), International Journal of Molecular Sciences, Volume 21, Issue 16
- Publication Year :
- 2020
-
Abstract
- The natively unfolded nature of intrinsically disordered proteins (IDPs) relies on several physicochemical principles, of which the balance between a low sequence hydrophobicity and a high net charge appears to be critical. Under this premise, it is well-known that disordered proteins populate a defined region of the charge&ndash<br />hydropathy (C&ndash<br />H) space and that a linear boundary condition is sufficient to distinguish between folded and disordered proteins, an approach widely applied for the prediction of protein disorder. Nevertheless, it is evident that the C&ndash<br />H relation of a protein is not unalterable but can be modulated by factors extrinsic to its sequence. Here, we applied a C&ndash<br />H-based analysis to develop a computational approach that evaluates sequence disorder as a function of pH, assuming that both protein net charge and hydrophobicity are dependent on pH solution. On that basis, we developed DispHred, the first pH-dependent predictor of protein disorder. Despite its simplicity, DispHred displays very high accuracy in identifying pH-induced order/disorder protein transitions. DispHred might be useful for diverse applications, from the analysis of conditionally disordered segments to the synthetic design of disorder tags for biotechnological applications. Importantly, since many disorder predictors use hydrophobicity as an input, the here developed framework can be implemented in other state-of-the-art algorithms.
- Subjects :
- 0301 basic medicine
disorder prediction
PH
Bioinformatics
Ph dependent
Conditional folding
Intrinsically disordered proteins
Article
Catalysis
Inorganic Chemistry
lcsh:Chemistry
User-Computer Interface
03 medical and health sciences
Machine learning
Physical and Theoretical Chemistry
conditional folding
Molecular Biology
lcsh:QH301-705.5
Spectroscopy
Disorder prediction
Sequence (medicine)
Internet
030102 biochemistry & molecular biology
Basis (linear algebra)
Chemistry
pH
Organic Chemistry
Reproducibility of Results
General Medicine
Function (mathematics)
bioinformatics
Hydrogen-Ion Concentration
Net (mathematics)
Disorder predictors
Computer Science Applications
030104 developmental biology
Order (biology)
machine learning
lcsh:Biology (General)
lcsh:QD1-999
intrinsically disordered proteins
Biological system
Hydrophobic and Hydrophilic Interactions
Algorithms
Subjects
Details
- Database :
- OpenAIRE
- Journal :
- Dipòsit Digital de Documents de la UAB, Universitat Autònoma de Barcelona, Recercat. Dipósit de la Recerca de Catalunya, instname, International Journal of Molecular Sciences, Vol 21, Iss 5814, p 5814 (2020), Recercat: Dipósit de la Recerca de Catalunya, Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya), International Journal of Molecular Sciences, Volume 21, Issue 16
- Accession number :
- edsair.doi.dedup.....c47970e3d9155a40027e117b27657f5c