Back to Search Start Over

High Working Capacity Acetylene Storage at Ambient Temperature Enabled by a Switching Adsorbent Layered Material

Authors :
Xiao-Qing Meng
Shaza Darwish
Xian-He Bu
Michael J. Zaworotko
Matthias Vandichel
Shi-Qiang Wang
Ze Chang
Source :
ACS Applied Materials & Interfaces
Publication Year :
2021
Publisher :
American Chemical Society (ACS), 2021.

Abstract

Unlike most gases, acetylene storage is a challenge because of its inherent pressure sensitivity. Herein, a square lattice (sql) coordination network [Cu(4,4′-bipyridine)2(BF4)2]n (sql-1-Cu-BF4) is investigated with respect to its C2H2 sorption behavior from 189 to 298 K. The C2H2 sorption studies revealed that sql-1-Cu-BF4 exhibits multistep isotherms that are temperature-dependent and consistent with the transformation from “closed” (nonporous) to four “open” (porous) phases induced by the C2H2 uptake. The Clausius–Clapeyron equation was used to calculate the performance of sql-1-Cu-BF4 for C2H2 storage at pressures >1 bar, which revealed that its volumetric working capacity at 288 K is slightly superior to acetone (174 vs 170 cm3 cm–3) over a safer pressure range (1–3.5 vs 1–15 bar). Molecular simulations provided insights into the observed switching phenomena, revealing that the layer expansion of sql-1-Cu-BF4 occurs via intercalation and inclusion of C2H2. These results indicate that switching adsorbent layered materials offer promise for utility in the context of C2H2 storage and delivery.

Details

ISSN :
19448252 and 19448244
Volume :
13
Database :
OpenAIRE
Journal :
ACS Applied Materials & Interfaces
Accession number :
edsair.doi.dedup.....c4133e2d48669353e641503562da4677