Back to Search Start Over

X-Ray Absorption Spectroscopy of Strontium(II) Coordination

Authors :
Susan A. Carroll
Nita Sahai
Matthew Newville
Peggy A. O'Day
Philip S. Neuhoff
Source :
Journal of Colloid and Interface Science. 222:198-212
Publication Year :
2000
Publisher :
Elsevier BV, 2000.

Abstract

Detailed analyses of crystalline, hydrated, and precipitated strontium compounds and an aqueous strontium solution by synchrotron extended X-ray absorption fine structure (EXAFS) were used to quantify local thermal and static disorder and to characterize strontium coordination in a variety of oxygen-ligated bonding environments. Analysis of anharmonic vibrational disorder (i.e., significant contribution from a third cumulant term (C(3)) in the EXAFS phase-shift function) in compounds with low and high static disorder around strontium showed that first-shell anharmonic contributions were generally not significant above experimental error in the EXAFS fits (R+/-0.02 Å with and without C(3)). The only case in which a significant apparent decrease in Sr-O distance was observed with increasing temperature, and for which a third cumulant term was significant, was for dilute strontium in aqueous solution. Empirical parameterization of Debye-Waller factor (sigma(2)) for strontium compounds as a function of backscatterer atomic number (Z), interatomic Sr-Z distance, and temperature of spectral data collection showed systematic increases in sigma(2) as a function of increasing temperature and Sr-Z bond length. At values of sigma(2) greater than approximately 0.025 Å(2) (for N12 and R(Sr)-Z3 Å), backscattering was generally not significant above noise levels in spectra of compounds of known crystal structure. Comparison of the EXAFS spectra of freshly precipitated SrCO(3) (spectra collected wet) to that of dry, powdered strontianite (SrCO(3)(s)) indicated no significant differences in the local atomic structure around strontium. Analysis of partially hydrated strontium in natural Ca-zeolite (heulandite) showed that strontium is substituted only in the calcium (Ca2) site. Backscattering from aluminum and silicon atoms in the zeolite framework were apparent in the EXAFS spectra at low and room temperature at distances from central strontium of4.2 Å. Comparison of strontium structural coordination determined in this and previous studies suggests that previous EXAFS determinations of hydrated strontium may have underestimated first-shell interatomic distances and coordination numbers because minor contributions to the EXAFS phase-shift and amplitude functions were not accounted for, either theoretically or empirically. Copyright 2000 Academic Press.

Details

ISSN :
00219797
Volume :
222
Database :
OpenAIRE
Journal :
Journal of Colloid and Interface Science
Accession number :
edsair.doi.dedup.....c3ffebb969bce5a60422004252f7e729
Full Text :
https://doi.org/10.1006/jcis.1999.6562