Back to Search Start Over

Structural determinants of the catalytic mechanism of Plasmodium CCT, a key enzyme of malaria lipid biosynthesis

Authors :
Gergely N. Nagy
Rachel Cerdan
Yinshan Yang
François Hoh
Jean-François Guichou
Henri Vial
Fanni Hajdú
Beáta G. Vértessy
Ewelina Guca
Lívia Marton
Richard Izrael
Department of Biochemistry and Molecular Biology [Debrecen, Hungary]
University of Debrecen [Hungary]
Ningxia Medical College
Dynamique moléculaire des interactions membranaires (DMIM)
Centre National de la Recherche Scientifique (CNRS)-Université Montpellier 2 - Sciences et Techniques (UM2)
Centre de Biochimie Structurale [Montpellier] (CBS)
Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Institut National de la Santé et de la Recherche Médicale (INSERM)
Dynamique des interactions membranaires normales et pathologiques (DIMNP)
Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
Source :
Scientific Reports, Vol 8, Iss 1, Pp 1-13 (2018), Scientific Reports, 'Scientific Reports ', vol: 8, pages: 11215-1-11215-13 (2018), Scientific Reports, Nature Publishing Group, 2018, 8 (1), ⟨10.1038/s41598-018-29500-9⟩
Publication Year :
2018
Publisher :
Springer Science and Business Media LLC, 2018.

Abstract

The development of the malaria parasite, Plasmodium falciparum, in the human erythrocyte, relies on phospholipid metabolism to fulfil the massive need for membrane biogenesis. Phosphatidylcholine (PC) is the most abundant phospholipid in Plasmodium membranes. PC biosynthesis is mainly ensured by the de novo Kennedy pathway that is considered as an antimalarial drug target. The CTP:phosphocholine cytidylyltransferase (CCT) catalyses the rate-limiting step of the Kennedy pathway. Here we report a series of structural snapshots of the PfCCT catalytic domain in its free, substrate- and product-complexed states that demonstrate the conformational changes during the catalytic mechanism. Structural data show the ligand-dependent conformational variations of a flexible lysine. Combined kinetic and ligand-binding analyses confirm the catalytic roles of this lysine and of two threonine residues of the helix αE. Finally, we assessed the variations in active site residues between Plasmodium and mammalian CCT which could be exploited for future antimalarial drug design.

Details

ISSN :
20452322
Volume :
8
Database :
OpenAIRE
Journal :
Scientific Reports
Accession number :
edsair.doi.dedup.....c3ec05d8dbd2d41ca90041adffa6d92a
Full Text :
https://doi.org/10.1038/s41598-018-29500-9