Back to Search Start Over

Surgery formulae for the Seiberg–Witten invariant of plumbed 3-manifolds

Authors :
Tamás László
János Nagy
András Némethi
Source :
Revista Matematica Complutense
Publication Year :
2019
Publisher :
Springer International Publishing, 2019.

Abstract

Assume that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M({{\mathcal {T}}})$$\end{document}M(T) is a rational homology sphere plumbed 3-manifold associated with a connected negative definite graph \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {T}$$\end{document}T. We consider the combinatorial multivariable Poincaré series associated with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {T}$$\end{document}T and its counting functions, which encode rich topological information. Using the ‘periodic constant’ of the series (with reduced variables associated with an arbitrary subset \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {I}}}$$\end{document}I of the set of vertices) we prove surgery formulae for the normalized Seiberg–Witten invariants: the periodic constant associated with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {I}}}$$\end{document}I appears as the difference of the Seiberg–Witten invariants of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M({{\mathcal {T}}})$$\end{document}M(T) and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M({{\mathcal {T}}}{\setminus }{{\mathcal {I}}})$$\end{document}M(T\I) for any \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {I}}}$$\end{document}I.

Details

Language :
English
ISSN :
19882807 and 11391138
Volume :
33
Issue :
1
Database :
OpenAIRE
Journal :
Revista Matematica Complutense
Accession number :
edsair.doi.dedup.....c3ead5bbbd041adb9e2fd54124377ce7