Back to Search
Start Over
Surgery formulae for the Seiberg–Witten invariant of plumbed 3-manifolds
- Source :
- Revista Matematica Complutense
- Publication Year :
- 2019
- Publisher :
- Springer International Publishing, 2019.
-
Abstract
- Assume that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M({{\mathcal {T}}})$$\end{document}M(T) is a rational homology sphere plumbed 3-manifold associated with a connected negative definite graph \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {T}$$\end{document}T. We consider the combinatorial multivariable Poincaré series associated with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {T}$$\end{document}T and its counting functions, which encode rich topological information. Using the ‘periodic constant’ of the series (with reduced variables associated with an arbitrary subset \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {I}}}$$\end{document}I of the set of vertices) we prove surgery formulae for the normalized Seiberg–Witten invariants: the periodic constant associated with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {I}}}$$\end{document}I appears as the difference of the Seiberg–Witten invariants of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M({{\mathcal {T}}})$$\end{document}M(T) and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M({{\mathcal {T}}}{\setminus }{{\mathcal {I}}})$$\end{document}M(T\I) for any \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {I}}}$$\end{document}I.
- Subjects :
- medicine.medical_specialty
General Mathematics
Topological information
Positive-definite matrix
01 natural sciences
Homology sphere
Poincaré series
Article
MSC 32S50
medicine
Quasipolynomials
0101 mathematics
Periodic constant
Mathematics::Symplectic Geometry
Mathematics
MSC 32S05
Seiberg–Witten invariant
010102 general mathematics
MSC 32S25
MSC 57M27
Plumbing graphs
Mathematics::Geometric Topology
Graph
Surgery
010101 applied mathematics
Normal surface singularities
Rational homology spheres
Surgery formula
Subjects
Details
- Language :
- English
- ISSN :
- 19882807 and 11391138
- Volume :
- 33
- Issue :
- 1
- Database :
- OpenAIRE
- Journal :
- Revista Matematica Complutense
- Accession number :
- edsair.doi.dedup.....c3ead5bbbd041adb9e2fd54124377ce7