Back to Search Start Over

An injective version of the 1-2-3 Conjecture

Authors :
Binlong Li
Bi Li
Julien Bensmail
Combinatorics, Optimization and Algorithms for Telecommunications (COATI)
COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED)
Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S)
Université Nice Sophia Antipolis (... - 2019) (UNS)
COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS)
COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S)
COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Inria Sophia Antipolis - Méditerranée (CRISAM)
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Xidian University
Northwestern Polytechnical University [Xi'an] (NPU)
The first author was supported by a funding granted by the program 'Jeunes Talents FRANCE-CHINE'. The second author was supported by the National Natural Science Foundation of China (No. 11701440, 11626181). The third author was supported by the National Natural Science Foundation of China (No. 11601429) and the Fundamental Research Funds for the Central Universities (No. 3102019ghjd003).
Université côte d'azur
Inria Sophia Antipolis - Méditerranée (CRISAM)
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED)
Université Nice Sophia Antipolis (1965 - 2019) (UNS)
COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS)
COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Source :
Graphs and Combinatorics, Graphs and Combinatorics, Springer Verlag, 2021, 37, pp.281-311. ⟨10.1007/s00373-020-02252-y⟩, Graphs and Combinatorics, 2021, 37, pp.281-311. ⟨10.1007/s00373-020-02252-y⟩
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

In this work, we introduce and study a new graph labelling problem standing as a combination of the 1-2-3 Conjecture and injective colouring of graphs, which also finds connections with the notion of graph irregularity. In this problem, the goal, given a graph G, is to label the edges of G so that every two vertices having a common neighbour get incident to different sums of labels. We are interested in the minimum k such that G admits such a k-labelling. We suspect that almost all graphs G can be labelled this way using labels $$1,\dots ,\Delta (G)$$ . Towards this speculation, we provide bounds on the maximum label value needed in general. In particular, we prove that using labels $$1,\dots ,\Delta (G)$$ is indeed sufficient when G is a tree, a particular cactus, or when its injective chromatic number $$\mathrm{\chi _{\mathrm{i}}}(G)$$ is equal to $$\Delta (G)$$ .

Details

Language :
English
ISSN :
09110119 and 14355914
Database :
OpenAIRE
Journal :
Graphs and Combinatorics, Graphs and Combinatorics, Springer Verlag, 2021, 37, pp.281-311. ⟨10.1007/s00373-020-02252-y⟩, Graphs and Combinatorics, 2021, 37, pp.281-311. ⟨10.1007/s00373-020-02252-y⟩
Accession number :
edsair.doi.dedup.....c3aeff132752fb19356bab1d14717d56
Full Text :
https://doi.org/10.1007/s00373-020-02252-y⟩