Back to Search Start Over

Hybrid Compound SA-2 is Neuroprotective in Animal Models of Retinal Ganglion Cell Death

Authors :
Adnan Dibas
Thomas Yorio
Wei Zhang
Suchismita Acharya
Dorette Z. Ellis
Tam Nguyen
Dorota L. Stankowska
Vignesh R. Krishnamoorthy
Sai H. Chavala
Linya Li
Source :
Investigative ophthalmologyvisual science. 60(8)
Publication Year :
2019

Abstract

Purpose Determine the toxicity, bioavailability in the retina, and neuroprotective effects of a hybrid antioxidant-nitric oxide donor compound SA-2 against oxidative stress-induced retinal ganglion cell (RGC) death in neurodegenerative animal models. Methods Optic nerve crush (ONC) and ischemia reperfusion (I/R) injury models were used in 12-week-old C57BL/6J mice to mimic conditions of glaucomatous neurodegeneration. Mice were treated intravitreally with either vehicle or SA-2. Retinal thickness was measured by spectral-domain optical coherence tomography (SD-OCT). The electroretinogram and pattern ERG (PERG) were used to assess retinal function. RGC survival was determined by counting RBPMS-positive RGCs and immunohistochemical analysis of superoxide dismutase 1 (SOD1) levels was carried out in the retina sections. Concentrations of SA-2 in the retina and choroid were determined using HPLC and MS. In addition, the direct effect of SA-2 treatment on RGC survival was assessed in ex vivo rat retinal explants under hypoxic (0.5% O2) conditions. Results Compound SA-2 did not induce any appreciable change in retinal thickness, or in a- or b-wave amplitude in naive animals. SA-2 was found to be bioavailable in both the retina and choroid after a single intravitreal injection (2% wt/vol). An increase in SOD1 levels in the retina of mice subjected to ONC and SA-2 treatment, suggests an enhancement in antioxidant activity. SA-2 provided significant (P < 0.05) RGC protection in all three of the tested RGC injury models in rodents. PERG amplitudes were significantly higher in both I/R and ONC mouse eyes following SA-2 treatment (P ≤ 0.001) in comparison with the vehicle and control groups. Conclusions Compound SA-2 was effective in preventing RGC death and loss of function in three different rodent models of acute RGC injury: ONC, I/R, and hypoxia.

Details

ISSN :
15525783
Volume :
60
Issue :
8
Database :
OpenAIRE
Journal :
Investigative ophthalmologyvisual science
Accession number :
edsair.doi.dedup.....c3adeb41d46903f17954fe7bdaf83917