Back to Search Start Over

Venus’ upper atmosphere revealed by a GCM: I. Structure and variability of the circulation

Authors :
Gerald Schubert
Sébastien Lebonnois
Thomas Navarro
Diogo Quirino
Franck Lefèvre
Gabriella Gilli
University of California [Los Angeles] (UCLA)
University of California
McGill University = Université McGill [Montréal, Canada]
Instituto de Astrofísica e Ciências do Espaço (IASTRO)
Faculdade de Ciências [Lisboa]
Universidade de Lisboa (ULISBOA)
Laboratoire de Météorologie Dynamique (UMR 8539) (LMD)
Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris
École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
PLANETO - LATMOS
Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS)
Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)
Source :
Icarus, Icarus, Elsevier, 2021, 114400 (in press). ⟨10.1016/j.icarus.2021.114400⟩, Icarus, Elsevier, 2021, 366 (September), pp.114400. ⟨10.1016/j.icarus.2021.114400⟩
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

International audience; A numerical simulation of the upper atmosphere of Venus is carried out with an improved version of the Institut Pierre-Simon Laplace (IPSL) full-physics Venus General Circulation Model (GCM). This simulation reveals the organization of the atmospheric circulation at an altitude above 80 km in unprecedented detail. Converging flow towards the antisolar point results in supersonic wind speeds and generates a shock-like feature past the terminator at altitudes above 110 km. This shock-like feature greatly decreases nightside thermospheric wind speeds, favoring atmospheric variability on a hourly timescale in the nightside of the thermosphere. A 5-day period Kelvin wave originating in the cloud deck is found to substantially impact the Venusian upper atmosphere circulation. As the Kelvin wave impacts the nightside, the poleward meridional circulation is enhanced. Consequently, recombined molecular oxygen is periodically ejected to high latitudes, explaining the characteristics of the various observations of oxygen nightglow at 1,27 µm. An analysis of the simulated 1,27µm oxygen nightglow shows that it is not necessarily a good tracer of the upper atmospheric dynamics, since contributions from chemical processes and vertical transport often prevail over horizontal transport. Moreover, dayside atomic oxygen abundances also vary periodically as the Kelvin wave momentarily decreases horizontal wind speeds and enhances atomic oxygen abundances, explaining the observations of EUV oxygen dayglow. Despite the nitrogen chemistry not being currently included in the IPSL Venus GCM, the apparent maximum NO nightglow shifted towards the morning terminator might be explained by the simulated structure of winds.

Details

Language :
English
ISSN :
00191035 and 10902643
Database :
OpenAIRE
Journal :
Icarus, Icarus, Elsevier, 2021, 114400 (in press). ⟨10.1016/j.icarus.2021.114400⟩, Icarus, Elsevier, 2021, 366 (September), pp.114400. ⟨10.1016/j.icarus.2021.114400⟩
Accession number :
edsair.doi.dedup.....c39d88a45cea08fa84ba8edfc06eb94b
Full Text :
https://doi.org/10.1016/j.icarus.2021.114400⟩