Back to Search Start Over

C9orf72 arginine-rich dipeptide proteins interact with ribosomal proteins in vivo to induce a toxic translational arrest that is rescued by eIF1A

Authors :
Katherine M. Wilson
Teresa Niccoli
Linda Partridge
Pietro Fratta
Mercedes Pardo
Benedikt V. Holbling
Nicol Birsa
Lauren M. Gittings
Julia Bussmann
Annora Thoeng
Thomas G. Moens
Miranda C. Dyson
Adrian M. Isaacs
Magda L. Atilano
Jyoti S. Choudhary
Jacob Neeves
Lu Yu
Idoia Glaria
Erik Storkebaum
Source :
Acta Neuropathologica, Acta Neuropathol, Acta Neuropathologica, 137, 487-500, Acta Neuropathologica, 137, 3, pp. 487-500
Publication Year :
2019

Abstract

A GGGGCC hexanucleotide repeat expansion within the C9orf72 gene is the most common genetic cause of both amyotrophic lateral sclerosis and frontotemporal dementia. Sense and antisense repeat-containing transcripts undergo repeat-associated non-AUG-initiated translation to produce five dipeptide proteins (DPRs). The polyGR and polyPR DPRs are extremely toxic when expressed in Drosophila neurons. To determine the mechanism that mediates this toxicity, we purified DPRs from the Drosophila brain and used mass spectrometry to identify the in vivo neuronal DPR interactome. PolyGR and polyPR interact with ribosomal proteins, and inhibit translation in both human iPSC-derived motor neurons, and adult Drosophila neurons. We next performed a screen of 81 translation-associated proteins in GGGGCC repeat-expressing Drosophila to determine whether this translational repression can be overcome and if this impacts neurodegeneration. Expression of the translation initiation factor eIF1A uniquely rescued DPR-induced toxicity in vivo, indicating that restoring translation is a potential therapeutic strategy. These data directly implicate translational repression in C9orf72 repeat-induced neurodegeneration and identify eIF1A as a novel modifier of C9orf72 repeat toxicity. Electronic supplementary material The online version of this article (10.1007/s00401-018-1946-4) contains supplementary material, which is available to authorized users.

Details

ISSN :
00016322
Volume :
137
Database :
OpenAIRE
Journal :
Acta Neuropathologica
Accession number :
edsair.doi.dedup.....c361232ef0f747c04b171e3a259e8b21