Back to Search Start Over

Induction of oxidative stress does not increase the cryotolerance of vitrified embryos

Authors :
Esther Sánchez-Villalba
Pía Loren
Ricardo Felmer
Raúl Sánchez
M. E. Arias
Jennie Risopatrón
Source :
Animal reproduction science. 219
Publication Year :
2019

Abstract

Short-term treatment of mammalian oocytes with different stressors induces stress tolerance of embryos derived from these oocytes. The aims of this study were to evaluate effects on embryo development when there was treatment of oocyte complexes (COCs) used to derive the embryos with hydrogen peroxide (H2O2).The COCs were not incubated with H2O2: control (0 μM), or were incubated with 25, 50, 75, or 100 μM concentrations of H2O2 for 1 h prior to in vitro fertilization, and presumptive zygotes were cultured until day 7. Blastocysts at day 7 of development derived from H2O2-treated (25 μM treatment concentration) COCs were vitrified. Percentage of embryos undergoing cleavage was not affected by any treatment, while percentage of embryos developing to the blastocyst stage was less when there was treatment of COCs with 100 μM of H2O2. Embryo quality was less when COCs used to derive blastocysts were treated with 50, 75, or 100 μM concentrations of H2O2. There were lesser relative abundances of some mRNA transcripts of interest in blastocysts when there was treatment of COCs with H2O2. After vitrification, there were no differences in embryo re-expansion and hatching rates compared with fresh and vitrified blastocysts of the control group and those derived from COCs treated with 25 μM H2O2. In conclusion, treatment of COCs used to derive blastocysts with H2O2 does not induce stress tolerance in vitrified embryos of cattle; however, the viability of these blastocysts is similar to those of the control group.

Details

ISSN :
18732232
Volume :
219
Database :
OpenAIRE
Journal :
Animal reproduction science
Accession number :
edsair.doi.dedup.....c336207af1176e2181657809482d86a7